IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v96y2016icp581-591.html
   My bibliography  Save this article

Operation parameter optimization of a gas hydrate reservoir developed by cyclic hot water stimulation with a separated-zone horizontal well based on particle swarm algorithm

Author

Listed:
  • Hou, Jian
  • Xia, Zhizeng
  • Li, Shuxia
  • Zhou, Kang
  • Lu, Nu

Abstract

This paper numerically investigated the production characteristics of a gas hydrate reservoir by cyclic hot water stimulation with a separated-zone horizontal well, which combines depressurization and thermal stimulation to improve the development effect. A class II conception model of a heterogeneous gas hydrate reservoir was established based on the reservoir parameters of the China Shenhu area. Optimal operation parameters of this method was determined by maximizing the net energy via PSO (particle swarm optimization). The results show that: (1) high gas production rate (>2 × 104 m3/d) and high energy ratio (>100) can be obtained using this method. (2) The gas hydrate in the low-permeability area can be recovered effectively, and there is a comparatively uniform cumulative gas production along the horizontal well, indicating the feasibility of the production scheme in recovering heterogeneous gas hydrate reservoirs. (3) To gain high net energy, the temperature of the injected water, the lower gas production rate limit of each cycle, the total amount of injected water and the injection rate should be maintained at high levels within the allowed range; For each segment, the amount of water and the injection rate should remain at a comparable level between areas with high and low permeability, whereas the injection rate should be lowered in the middle areas.

Suggested Citation

  • Hou, Jian & Xia, Zhizeng & Li, Shuxia & Zhou, Kang & Lu, Nu, 2016. "Operation parameter optimization of a gas hydrate reservoir developed by cyclic hot water stimulation with a separated-zone horizontal well based on particle swarm algorithm," Energy, Elsevier, vol. 96(C), pages 581-591.
  • Handle: RePEc:eee:energy:v:96:y:2016:i:c:p:581-591
    DOI: 10.1016/j.energy.2015.12.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215017119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhade, Piyush & Phirani, Jyoti, 2015. "Gas production from layered methane hydrate reservoirs," Energy, Elsevier, vol. 82(C), pages 686-696.
    2. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Chen, Zhao-Yang, 2015. "Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells," Energy, Elsevier, vol. 79(C), pages 315-324.
    3. Li, Gang & Li, Xiao-Sen & Wang, Yi & Zhang, Yu, 2011. "Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator," Energy, Elsevier, vol. 36(5), pages 3170-3178.
    4. Li, Xiao-Sen & Yang, Bo & Duan, Li-Ping & Li, Gang & Huang, Ning-Sheng & Zhang, Yu, 2013. "Experimental study on gas production from methane hydrate in porous media by SAGD method," Applied Energy, Elsevier, vol. 112(C), pages 1233-1240.
    5. Zhao, Jiafei & Yu, Tao & Song, Yongchen & Liu, Di & Liu, Weiguo & Liu, Yu & Yang, Mingjun & Ruan, Xuke & Li, Yanghui, 2013. "Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China," Energy, Elsevier, vol. 52(C), pages 308-319.
    6. Li, Xiao-Sen & Li, Bo & Li, Gang & Yang, Bo, 2012. "Numerical simulation of gas production potential from permafrost hydrate deposits by huff and puff method in a single horizontal well in Qilian Mountain, Qinghai province," Energy, Elsevier, vol. 40(1), pages 59-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaoqiang & Qu, Zhanqing & Guo, Tiankui & Sun, Ying & Rabiei, Minou & Liao, Hualin, 2021. "A coupled thermo-hydrologic-mechanical (THM) model to study the impact of hydrate phase transition on reservoir damage," Energy, Elsevier, vol. 216(C).
    2. Bai, Yajie & Hou, Jian & Liu, Yongge & Lu, Nu & Zhao, Ermeng & Ji, Yunkai, 2020. "Interbed patterns division and its effect on production performance for class I hydrate deposit with mudstone interbed," Energy, Elsevier, vol. 211(C).
    3. Lu, Nu & Hou, Jian & Liu, Yongge & Barrufet, Maria A. & Ji, Yunkai & Xia, Zhizeng & Xu, Boyue, 2018. "Stage analysis and production evaluation for class III gas hydrate deposit by depressurization," Energy, Elsevier, vol. 165(PB), pages 501-511.
    4. Bai, Yajie & Hou, Jian & Liu, Yongge & Zhao, Dong & Bing, Shaoxian & Xiao, Wu & Zhao, Wei, 2022. "Energy-consumption calculation and optimization method of integrated system of injection-reservoir-production in high water-cut reservoir," Energy, Elsevier, vol. 239(PA).
    5. Yin, Zhenyuan & Zhang, Shuyu & Koh, Shanice & Linga, Praveen, 2020. "Estimation of the thermal conductivity of a heterogeneous CH4-hydrate bearing sample based on particle swarm optimization," Applied Energy, Elsevier, vol. 271(C).
    6. Yu, Lu & Zhang, Liang & Zhang, Rui & Ren, Shaoran, 2018. "Assessment of natural gas production from hydrate-bearing sediments with unconsolidated argillaceous siltstones via a controlled sandout method," Energy, Elsevier, vol. 160(C), pages 654-667.
    7. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    8. Sun, Fengrui & Li, Chunlan & Cheng, Linsong & Huang, Shijun & Zou, Ming & Sun, Qun & Wu, Xiaojun, 2017. "Production performance analysis of heavy oil recovery by cyclic superheated steam stimulation," Energy, Elsevier, vol. 121(C), pages 356-371.
    9. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    10. Chen, Xuyue & Du, Xu & Yang, Jin & Gao, Deli & Zou, Yiqi & He, Qinyi, 2022. "Developing offshore natural gas hydrate from existing oil & gas platform based on a novel multilateral wells system: Depressurization combined with thermal flooding by utilizing geothermal heat from e," Energy, Elsevier, vol. 258(C).
    11. Liu, Yongge & Hou, Jian & Zhao, Haifeng & Liu, Xiaoyu & Xia, Zhizeng, 2018. "A method to recover natural gas hydrates with geothermal energy conveyed by CO2," Energy, Elsevier, vol. 144(C), pages 265-278.
    12. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    13. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    14. Terzariol, M. & Goldsztein, G. & Santamarina, J.C., 2017. "Maximum recoverable gas from hydrate bearing sediments by depressurization," Energy, Elsevier, vol. 141(C), pages 1622-1628.
    15. Liu, Yongge & Hou, Jian & Chen, Zhangxin & Bai, Yajie & Su, Haiyang & Zhao, Ermeng & Li, Guangming, 2021. "Enhancing hot water flooding in hydrate bearing layers through a novel staged production method," Energy, Elsevier, vol. 217(C).
    16. Lu, Nu & Hou, Jian & Liu, Yongge & Barrufet, Maria A. & Bai, Yajie & Ji, Yunkai & Zhao, Ermeng & Chen, Weiqing & Zhou, Kang, 2019. "Revised inflow performance relationship for productivity prediction and energy evaluation based on stage characteristics of Class III methane hydrate deposits," Energy, Elsevier, vol. 189(C).
    17. Hou, Jian & Zhao, Ermeng & Liu, Yongge & Ji, Yunkai & Lu, Nu & Liu, Yueliang & Li, Huazhou Andy & Bai, Yajie, 2019. "Pressure-transient behavior in class III hydrate reservoirs," Energy, Elsevier, vol. 170(C), pages 391-402.
    18. Liu, Yongge & Hou, Jian & Zhao, Haifeng & Liu, Xiaoyu & Xia, Zhizeng, 2019. "Numerical simulation of simultaneous exploitation of geothermal energy and natural gas hydrates by water injection into a geothermal heat exchange well," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 467-481.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Yongchang & Chen, Lin & Suzuki, Anna & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2019. "Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 166(C), pages 1106-1119.
    2. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    3. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    4. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Chen, Zhao-Yang, 2015. "Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 145(C), pages 69-79.
    5. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    6. Ren, Liang-Liang & Jiang, Min & Wang, Ling-Ban & Zhu, Yi-Jian & Li, Zhi & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Gas hydrate exploitation and carbon dioxide sequestration under maintaining the stiffness of hydrate-bearing sediments," Energy, Elsevier, vol. 194(C).
    7. Li, Gang & Li, Xiao-Sen & Li, Bo & Wang, Yi, 2014. "Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator," Energy, Elsevier, vol. 64(C), pages 298-306.
    8. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    9. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu, 2015. "Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells," Energy, Elsevier, vol. 90(P1), pages 836-845.
    10. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    11. Li, Mingchuan & Fan, Shuanshi & Su, Yuliang & Ezekiel, Justin & Lu, Mingjing & Zhang, Liang, 2015. "Mathematical models of the heat-water dissociation of natural gas hydrates considering a moving Stefan boundary," Energy, Elsevier, vol. 90(P1), pages 202-207.
    12. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    13. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    14. Zhao, Jiafei & Yu, Tao & Song, Yongchen & Liu, Di & Liu, Weiguo & Liu, Yu & Yang, Mingjun & Ruan, Xuke & Li, Yanghui, 2013. "Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China," Energy, Elsevier, vol. 52(C), pages 308-319.
    15. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    16. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2015. "Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods," Energy, Elsevier, vol. 90(P2), pages 1931-1948.
    17. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2017. "Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs," Energy, Elsevier, vol. 125(C), pages 62-71.
    18. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    19. Bi, Yuehong & Chen, Jie & Miao, Zhen, 2016. "Thermodynamic optimization for dissociation process of gas hydrates," Energy, Elsevier, vol. 106(C), pages 270-276.
    20. Yun-Pei Liang & Xiao-Sen Li & Bo Li, 2015. "Assessment of Gas Production Potential from Hydrate Reservoir in Qilian Mountain Permafrost Using Five-Spot Horizontal Well System," Energies, MDPI, vol. 8(10), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:96:y:2016:i:c:p:581-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.