IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p202-207.html
   My bibliography  Save this article

Mathematical models of the heat-water dissociation of natural gas hydrates considering a moving Stefan boundary

Author

Listed:
  • Li, Mingchuan
  • Fan, Shuanshi
  • Su, Yuliang
  • Ezekiel, Justin
  • Lu, Mingjing
  • Zhang, Liang

Abstract

This paper presents mathematical models for radial, quasi-steady state heat transfer in a semi-infinite hydrate reservoir with a moving boundary that is related to the dissociation of natural gas hydrates. The exact solutions of the temperature in the dissociation zone and hydrate zone, using the Paterson exponential integral function, are obtained, and the dissociation frontal brim location of the hydrates is determined by combining the Deaton method with the Clausius–Claperyron equation. A sample calculation shows that the reservoir temperature falls sharply to the dissociation temperature and then drops gradually with increasing distance to the reservoir temperature. With respect to time, the temperature increases slowly to the dissociation temperature, after which, the dissociation temperature falls sharply to the temperature close to that of the injected hot-water. By increasing the temperature of injected hot-water, more hydrates participate in dissociation; with an increase in time, the radius quickly increases, but the radius of hydrate dissociation increases slowly.

Suggested Citation

  • Li, Mingchuan & Fan, Shuanshi & Su, Yuliang & Ezekiel, Justin & Lu, Mingjing & Zhang, Liang, 2015. "Mathematical models of the heat-water dissociation of natural gas hydrates considering a moving Stefan boundary," Energy, Elsevier, vol. 90(P1), pages 202-207.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:202-207
    DOI: 10.1016/j.energy.2015.05.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215006453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhade, Piyush & Phirani, Jyoti, 2015. "Gas production from layered methane hydrate reservoirs," Energy, Elsevier, vol. 82(C), pages 686-696.
    2. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Chen, Zhao-Yang, 2015. "Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells," Energy, Elsevier, vol. 79(C), pages 315-324.
    3. Li, Gang & Li, Xiao-Sen & Wang, Yi & Zhang, Yu, 2011. "Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator," Energy, Elsevier, vol. 36(5), pages 3170-3178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mingchuan & Fan, Shuanshi & Su, Yuliang & Xu, Fuhai & Li, Yan & Lu, Mingjing & Sheng, Guanglong & Yan, Ke, 2018. "The Stefan moving boundary models for the heat-dissociation hydrate with a density difference," Energy, Elsevier, vol. 160(C), pages 1124-1132.
    2. Feng, Qian & Liu, Xian-jie & Peng, Zhi-gang & Zheng, Yong & Huo, Jin-hua & Liu, Huan, 2019. "Preparation of low hydration heat cement slurry with micro-encapsulated thermal control material," Energy, Elsevier, vol. 187(C).
    3. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    4. Terzariol, M. & Goldsztein, G. & Santamarina, J.C., 2017. "Maximum recoverable gas from hydrate bearing sediments by depressurization," Energy, Elsevier, vol. 141(C), pages 1622-1628.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Jian & Xia, Zhizeng & Li, Shuxia & Zhou, Kang & Lu, Nu, 2016. "Operation parameter optimization of a gas hydrate reservoir developed by cyclic hot water stimulation with a separated-zone horizontal well based on particle swarm algorithm," Energy, Elsevier, vol. 96(C), pages 581-591.
    2. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2017. "Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs," Energy, Elsevier, vol. 125(C), pages 62-71.
    3. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    4. Bi, Yuehong & Chen, Jie & Miao, Zhen, 2016. "Thermodynamic optimization for dissociation process of gas hydrates," Energy, Elsevier, vol. 106(C), pages 270-276.
    5. Ren, Liang-Liang & Jiang, Min & Wang, Ling-Ban & Zhu, Yi-Jian & Li, Zhi & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Gas hydrate exploitation and carbon dioxide sequestration under maintaining the stiffness of hydrate-bearing sediments," Energy, Elsevier, vol. 194(C).
    6. Li, Xiao-Yan & Wan, Kun & Wang, Yi & Li, Xiao-Sen, 2022. "The double-edged characteristics of the soaking time during hydrate dissociation by periodic depressurization combined with hot water injection," Applied Energy, Elsevier, vol. 325(C).
    7. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    8. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    9. Feng, Yongchang & Chen, Lin & Suzuki, Anna & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2019. "Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 166(C), pages 1106-1119.
    10. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    11. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    12. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    13. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    14. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    15. Li, Gang & Li, Xiao-Sen & Lv, Qiu-Nan & Xiao, Chang-Wen & Liu, Jian-Wu, 2023. "Full implicit simulator of hydrate (FISH) and analysis on hydrate dissociation in porous media in the cubic hydrate simulator," Energy, Elsevier, vol. 280(C).
    16. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    17. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    18. Zhao, Jiafei & Yu, Tao & Song, Yongchen & Liu, Di & Liu, Weiguo & Liu, Yu & Yang, Mingjun & Ruan, Xuke & Li, Yanghui, 2013. "Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China," Energy, Elsevier, vol. 52(C), pages 308-319.
    19. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    20. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:202-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.