IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipbp501-511.html
   My bibliography  Save this article

Stage analysis and production evaluation for class III gas hydrate deposit by depressurization

Author

Listed:
  • Lu, Nu
  • Hou, Jian
  • Liu, Yongge
  • Barrufet, Maria A.
  • Ji, Yunkai
  • Xia, Zhizeng
  • Xu, Boyue

Abstract

Natural gas hydrate is of wide distribution and great potential as clean energy. To improve the production performance, the production characteristics of class III gas hydrate are studied by numerical simulation method when initial gas saturation is below the irreducible gas saturation. Based on the gas production behavior, a quantitative method is developed using both the production data and deposit properties to analyze the production process. A new index is introduced to evaluate the energy utilization efficiency of production stages. Then the influencing factors are analyzed. The results indicate that production can be divided into four stages, including slow changing stage, rapid increasing stage, rapid decreasing stage and stable decreasing stage. The boundaries between stages are clearly defined. Compared with other production stages, the first stage has lower energy utilization efficiency. The ratio drop of energy consumed by this stage can enhance the accumulative gas production. The gas flow ability and drawdown pressure impact the production stage and production performance. Optimization of related factors can improve the production performance. Hot fluid injection and fracturing should be considered when reservoir energy is low or gas flow ability is weak.

Suggested Citation

  • Lu, Nu & Hou, Jian & Liu, Yongge & Barrufet, Maria A. & Ji, Yunkai & Xia, Zhizeng & Xu, Boyue, 2018. "Stage analysis and production evaluation for class III gas hydrate deposit by depressurization," Energy, Elsevier, vol. 165(PB), pages 501-511.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:501-511
    DOI: 10.1016/j.energy.2018.09.184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218319510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yongge & Hou, Jian & Zhao, Haifeng & Liu, Xiaoyu & Xia, Zhizeng, 2018. "A method to recover natural gas hydrates with geothermal energy conveyed by CO2," Energy, Elsevier, vol. 144(C), pages 265-278.
    2. Yang, Mingjun & Fu, Zhe & Jiang, Lanlan & Song, Yongchen, 2017. "Gas recovery from depressurized methane hydrate deposits with different water saturations," Applied Energy, Elsevier, vol. 187(C), pages 180-188.
    3. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    4. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2017. "Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs," Energy, Elsevier, vol. 125(C), pages 62-71.
    5. Terzariol, M. & Goldsztein, G. & Santamarina, J.C., 2017. "Maximum recoverable gas from hydrate bearing sediments by depressurization," Energy, Elsevier, vol. 141(C), pages 1622-1628.
    6. Chen, Lin & Feng, Yongchang & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2018. "Construction and simulation of reservoir scale layered model for production and utilization of methane hydrate: The case of Nankai Trough Japan," Energy, Elsevier, vol. 143(C), pages 128-140.
    7. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
    8. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    9. Li, Bo & Li, Xiao-Sen & Li, Gang & Feng, Jing-Chun & Wang, Yi, 2014. "Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 129(C), pages 274-286.
    10. Walsh, Matthew R. & Hancock, Steve H. & Wilson, Scott J. & Patil, Shirish L. & Moridis, George J. & Boswell, Ray & Collett, Timothy S. & Koh, Carolyn A. & Sloan, E. Dendy, 2009. "Preliminary report on the commercial viability of gas production from natural gas hydrates," Energy Economics, Elsevier, vol. 31(5), pages 815-823, September.
    11. Bi, Yuehong & Chen, Jie & Miao, Zhen, 2016. "Thermodynamic optimization for dissociation process of gas hydrates," Energy, Elsevier, vol. 106(C), pages 270-276.
    12. Zhao, Jiafei & Zhu, Zihao & Song, Yongchen & Liu, Weiguo & Zhang, Yi & Wang, Dayong, 2015. "Analyzing the process of gas production for natural gas hydrate using depressurization," Applied Energy, Elsevier, vol. 142(C), pages 125-134.
    13. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    14. Hou, Jian & Xia, Zhizeng & Li, Shuxia & Zhou, Kang & Lu, Nu, 2016. "Operation parameter optimization of a gas hydrate reservoir developed by cyclic hot water stimulation with a separated-zone horizontal well based on particle swarm algorithm," Energy, Elsevier, vol. 96(C), pages 581-591.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Yajie & Hou, Jian & Liu, Yongge & Lu, Nu & Zhao, Ermeng & Ji, Yunkai, 2020. "Interbed patterns division and its effect on production performance for class I hydrate deposit with mudstone interbed," Energy, Elsevier, vol. 211(C).
    2. He, Juan & Li, Xiaosen & Chen, Zhaoyang & Huang, Xiaoliang & Shen, Pengfei, 2023. "Effect of heterogeneous hydrate distribution on hydrate production under different hole combinations," Energy, Elsevier, vol. 283(C).
    3. Feng, Yongchang & Chen, Lin & Kanda, Yuki & Suzuki, Anna & Komiya, Atsuki & Maruyama, Shigenao, 2021. "Numerical analysis of gas production from large-scale methane hydrate sediments with fractures," Energy, Elsevier, vol. 236(C).
    4. Choi, Wonjung & Mok, Junghoon & Lee, Yohan & Lee, Jaehyoung & Seo, Yongwon, 2021. "Optimal driving force for the dissociation of CH4 hydrates in hydrate-bearing sediments using depressurization," Energy, Elsevier, vol. 223(C).
    5. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Tu, Guigang & Nie, Shuaishuai & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2022. "Commercial production potential evaluation of injection-production mode for CH-Bk hydrate reservoir and investigation of its stimulated potential by fracture network," Energy, Elsevier, vol. 239(PB).
    6. Zhao, Ermeng & Hou, Jian & Liu, Yongge & Ji, Yunkai & Liu, Wenbin & Lu, Nu & Bai, Yajie, 2020. "Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea," Energy, Elsevier, vol. 213(C).
    7. Lu, Nu & Hou, Jian & Liu, Yongge & Barrufet, Maria A. & Bai, Yajie & Ji, Yunkai & Zhao, Ermeng & Chen, Weiqing & Zhou, Kang, 2019. "Revised inflow performance relationship for productivity prediction and energy evaluation based on stage characteristics of Class III methane hydrate deposits," Energy, Elsevier, vol. 189(C).
    8. Hou, Jian & Zhao, Ermeng & Liu, Yongge & Ji, Yunkai & Lu, Nu & Liu, Yueliang & Li, Huazhou Andy & Bai, Yajie, 2019. "Pressure-transient behavior in class III hydrate reservoirs," Energy, Elsevier, vol. 170(C), pages 391-402.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    2. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    3. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    4. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    5. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    6. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
    7. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    8. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    9. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    10. Kou, Xuan & Wang, Yi & Li, Xiao-Sen & Zhang, Yu & Chen, Zhao-Yang, 2019. "Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    12. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    13. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    14. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    16. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    17. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    18. Yu, Lu & Zhang, Liang & Zhang, Rui & Ren, Shaoran, 2018. "Assessment of natural gas production from hydrate-bearing sediments with unconsolidated argillaceous siltstones via a controlled sandout method," Energy, Elsevier, vol. 160(C), pages 654-667.
    19. Zhao, Yingjie & Hu, Wei & Dou, Xiaofeng & Liu, Zhichao & Ning, Fulong, 2024. "Experimental investigation on the geological responses and production behaviors of natural gas hydrate-bearing sediments under various hydrate saturations and depressurization strategies," Applied Energy, Elsevier, vol. 374(C).
    20. Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:501-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.