IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip1p416-420.html
   My bibliography  Save this article

Analytical insight into the oxygen diffusion in wetted porous cathodes of Li-air batteries

Author

Listed:
  • Ye, Luhan
  • Wang, Xiaoning
  • Lv, Weiqiang
  • Fei, Jipeng
  • Zhu, Gaolong
  • Liang, Yachun
  • Song, Yuanqiang
  • Zhai, Junyi
  • He, Weidong

Abstract

Lithium-air batteries have attracted extensive attention in the general energy field. To enhance the practical applicability of lithium-air batteries, the overpotential caused by the diffusion of oxygen in the cathode, a significant component of the total overpotential, should be well comprehended. In this work, a wetted model is derived to evaluate the energy loss associated with liquid electrolytes. The oxygen diffusion in both electrolytes and porous cathodes is investigated systematically by taking oxygen concentration distribution into account. By analyzing the factors associated with cathode overpotential, such as the cathode thickness of and the viscosity of electrolyte, our work facilitates the improvement in the electrochemical performance of lithium-air batteries.

Suggested Citation

  • Ye, Luhan & Wang, Xiaoning & Lv, Weiqiang & Fei, Jipeng & Zhu, Gaolong & Liang, Yachun & Song, Yuanqiang & Zhai, Junyi & He, Weidong, 2015. "Analytical insight into the oxygen diffusion in wetted porous cathodes of Li-air batteries," Energy, Elsevier, vol. 93(P1), pages 416-420.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:416-420
    DOI: 10.1016/j.energy.2015.09.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215012645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    2. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    3. Ben-Moshe, Ori & Rubin, Ofir D., 2015. "Does wind energy mitigate market power in deregulated electricity markets?," Energy, Elsevier, vol. 85(C), pages 511-521.
    4. Li, Xianglin & Huang, Jing & Faghri, Amir, 2015. "Modeling study of a Li–O2 battery with an active cathode," Energy, Elsevier, vol. 81(C), pages 489-500.
    5. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    6. Aggarwal, S.K. & Saini, L.M., 2014. "Solar energy prediction using linear and non-linear regularization models: A study on AMS (American Meteorological Society) 2013–14 Solar Energy Prediction Contest," Energy, Elsevier, vol. 78(C), pages 247-256.
    7. Ye, Luhan & Lv, Weiqiang & Zhang, Kelvin H.L. & Wang, Xiaoning & Yan, Pengfei & Dickerson, James H. & He, Weidong, 2015. "A new insight into the oxygen diffusion in porous cathodes of lithium-air batteries," Energy, Elsevier, vol. 83(C), pages 669-673.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Jiashu & Zhu, Yongming & Gao, Jian & Li, Wantang, 2015. "Electrochemical performance of mixed carbon material with waterproof membrane for lithium air battery in the ambient atmosphere," Energy, Elsevier, vol. 89(C), pages 84-91.
    2. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    3. Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
    4. Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2017. "The impacts of wind and solar on grid flexibility requirements in the Electric Reliability Council of Texas," Energy, Elsevier, vol. 123(C), pages 637-654.
    5. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    6. De Giorgi, M.G. & Malvoni, M. & Congedo, P.M., 2016. "Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine," Energy, Elsevier, vol. 107(C), pages 360-373.
    7. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    8. Jun-Ping Hu & Hang Sheng & Qi Deng & Qiang Ma & Jun Liu & Xiong-Wei Wu & Jun-Jie Liu & Yu-Ping Wu, 2020. "High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure," Energies, MDPI, vol. 13(7), pages 1-12, April.
    9. Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
    10. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    11. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    12. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    13. Piotr Siemiątkowski & Patryk Tomaszewski & Joanna Marszałek-Kawa & Janusz Gierszewski, 2020. "The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order," Energies, MDPI, vol. 13(21), pages 1-19, October.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Keun-Seob Choi & Jeong-Dong Lee & Chulwoo Baek, 2016. "Growth of De Alio and De Novo firms in the new and renewable energy industry," Industry and Innovation, Taylor & Francis Journals, vol. 23(4), pages 295-312, May.
    16. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    17. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    18. Tomislav Malvić & Uroš Barudžija & Borivoje Pašić & Josip Ivšinović, 2021. "Small Unconventional Hydrocarbon Gas Reservoirs as Challenging Energy Sources, Case Study from Northern Croatia," Energies, MDPI, vol. 14(12), pages 1-16, June.
    19. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    20. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:416-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.