IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp1018-1029.html
   My bibliography  Save this article

Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions

Author

Listed:
  • Yang, Mou
  • Li, Xiaoxiao
  • Deng, Jianmin
  • Meng, Yingfeng
  • Li, Gao

Abstract

As the kick occurred during the drilling process is a key factor for effecting the temperature distributions of wellbore and formation, the transient heat exchange mechanisms for the radical and axial directions of wellbore and formation under kick conditions were investigated. Two operation stages, namely circulation and shut-in, were taken into consideration. Based on the first law of thermodynamics, a set of transient heat transfer models were developed to accurately predict temperature profiles of wellbore and formation. The models were solved using the fully implicit finite difference method, coupled with clustering method. The results indicated that the depth of kick and casing program could alter the heat exchange efficiency of wellbore and formation, and therefore affect the temperature distribution of wellbore and formation. Additionally, circulation and shut-in stages as well as the initial and boundary conditions for each region of wellbore and formation could also affect the heat transfer mechanism, leading to the variation of distribution distance of the initial formation temperature in the surrounding wellbore. More importantly, this model fitted actual field data better than other heat transfer models. These findings could provide theoretical insights into the temperature distribution of wellbore-formation system in drilling under kick conditions.

Suggested Citation

  • Yang, Mou & Li, Xiaoxiao & Deng, Jianmin & Meng, Yingfeng & Li, Gao, 2015. "Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions," Energy, Elsevier, vol. 91(C), pages 1018-1029.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:1018-1029
    DOI: 10.1016/j.energy.2015.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Wen-Long & Huang, Yong-Hua & Liu, Na & Ma, Ran, 2012. "Estimation of geological formation thermal conductivity by using stochastic approximation method based on well-log temperature data," Energy, Elsevier, vol. 38(1), pages 21-30.
    2. Ali, Ahmed Hamza H. & Ahmed, Mahmoud & Youssef, M.S., 2010. "Characteristics of heat transfer and fluid flow in a channel with single-row plates array oblique to flow direction for photovoltaic/thermal system," Energy, Elsevier, vol. 35(9), pages 3524-3534.
    3. Cheng, Wen-Long & Huang, Yong-Hua & Lu, De-Tang & Yin, Hong-Ru, 2011. "A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity," Energy, Elsevier, vol. 36(7), pages 4080-4088.
    4. Nakashima, Celso Y. & de Oliveira, Silvio & Caetano, E.F., 2006. "Heat transfer in a twin-screw multiphase pump: Thermal modeling and one application in the petroleum industry," Energy, Elsevier, vol. 31(15), pages 3415-3425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiyao Zhang & Jun Li & Gonghui Liu & Hongwei Yang & Hailong Jiang, 2019. "Analysis of Coupled Wellbore Temperature and Pressure Calculation Model and Influence Factors under Multi-Pressure System in Deep-Water Drilling," Energies, MDPI, vol. 12(18), pages 1-27, September.
    2. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    3. Zhang, Zheng & Xiong, Youming & Pu, Hui & Sun, Zheng, 2021. "Effect of the variations of thermophysical properties of drilling fluids with temperature on wellbore temperature calculation during drilling," Energy, Elsevier, vol. 214(C).
    4. Zhang, Nanlin & Chen, Zhangxin & Luo, Zhifeng & Liu, Pingli & Chen, Weiyu & Liu, Fushen, 2023. "Effect of the phase-transition fluid reaction heat on wellbore temperature in self-propping phase-transition fracturing technology," Energy, Elsevier, vol. 265(C).
    5. Bo Feng & Jin Li & Zaoyuan Li & Xuning Wu & Jian Liu & Sheng Huang & Jinfei Sun, 2023. "Enhancing Environmental Protection in Oil and Gas Wells through Improved Prediction Method of Cement Slurry Temperature," Energies, MDPI, vol. 16(13), pages 1-17, June.
    6. Abbas, Ahmed K. & Bashikh, Ali A. & Abbas, Hayder & Mohammed, Haider Q., 2019. "Intelligent decisions to stop or mitigate lost circulation based on machine learning," Energy, Elsevier, vol. 183(C), pages 1104-1113.
    7. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    8. Yang, Mou & Luo, Dayu & Chen, Yuanhang & Li, Gao & Tang, Daqian & Meng, Yingfeng, 2019. "Establishing a practical method to accurately determine and manage wellbore thermal behavior in high-temperature drilling," Applied Energy, Elsevier, vol. 238(C), pages 1471-1483.
    9. Yang, Hongwei & Li, Jun & Liu, Gonghui & Wang, Chao & Li, Mengbo & Jiang, Hailong, 2019. "Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling," Energy, Elsevier, vol. 179(C), pages 138-153.
    10. Mao, Liangjie & Wei, Changjiang & Jia, Hai & Lu, Kechong, 2023. "Prediction model of drilling wellbore temperature considering bit heat generation and variation of mud thermophysical parameters," Energy, Elsevier, vol. 284(C).
    11. Wang, Yi & Zhang, Liang & Cui, Guodong & Kang, Jun & Ren, Shaoran, 2019. "Geothermal development and power generation by circulating water and isobutane via a closed-loop horizontal well from hot dry rocks," Renewable Energy, Elsevier, vol. 136(C), pages 909-922.
    12. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    13. Xin Chang & Jun Zhou & Yintong Guo & Shiming He & Lei Wang & Yulin Chen & Ming Tang & Rui Jian, 2018. "Heat Transfer Behaviors in Horizontal Wells Considering the Effects of Drill Pipe Rotation, and Hydraulic and Mechanical Frictions during Drilling Procedures," Energies, MDPI, vol. 11(9), pages 1-28, September.
    14. Kang, Yili & Ma, Chenglin & Xu, Chengyuan & You, Lijun & You, Zhenjiang, 2023. "Prediction of drilling fluid lost-circulation zone based on deep learning," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Fengrui & Yao, Yuedong & Chen, Mingqiang & Li, Xiangfang & Zhao, Lin & Meng, Ye & Sun, Zheng & Zhang, Tao & Feng, Dong, 2017. "Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency," Energy, Elsevier, vol. 125(C), pages 795-804.
    2. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Xie, Kun, 2014. "Evaluation of working fluids for geothermal power generation from abandoned oil wells," Applied Energy, Elsevier, vol. 118(C), pages 238-245.
    3. Cheng, Wen-Long & Nian, Yong-Le & Li, Tong-Tong & Wang, Chang-Long, 2013. "Estimation of oil reservoir thermal properties through temperature log data using inversion method," Energy, Elsevier, vol. 55(C), pages 1186-1195.
    4. Hou, Hongjuan & Du, Qiongjie & Huang, Chang & Zhang, Le & Hu, Eric, 2021. "An oil shale recovery system powered by solar thermal energy," Energy, Elsevier, vol. 225(C).
    5. Cheng, Wen-Long & Nian, Yong-Le & Li, Tong-Tong & Wang, Chang-Long, 2014. "A novel method for predicting spatial distribution of thermal properties and oil saturation of steam injection well from temperature logs," Energy, Elsevier, vol. 66(C), pages 898-906.
    6. Gu, Hao & Cheng, Linsong & Huang, Shijun & Du, Baojian & Hu, Changhao, 2014. "Prediction of thermophysical properties of saturated steam and wellbore heat losses in concentric dual-tubing steam injection wells," Energy, Elsevier, vol. 75(C), pages 419-429.
    7. Zhang, Jun, 2023. "Performance of high temperature steam injection in horizontal wells of heavy oil reservoirs," Energy, Elsevier, vol. 282(C).
    8. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of coalbed methane: Modeling of heat and mass transfer in wellbores," Energy, Elsevier, vol. 263(PD).
    9. Fengrui Sun & Yuedong Yao & Xiangfang Li & Guozhen Li & Liang Huang & Hao Liu & Zhili Chen & Qing Liu & Wenyuan Liu & Meng Cao & Song Han, 2018. "Exploitation of heavy oil by supercritical CO2: Effect analysis of supercritical CO2 on H2O at superheated state in integral joint tubing and annuli," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 557-569, June.
    10. Sun, Fengrui & Yao, Yuedong & Li, Xiangfang, 2018. "The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique," Energy, Elsevier, vol. 143(C), pages 995-1005.
    11. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Wang, Chang-Long, 2013. "Studies on geothermal power generation using abandoned oil wells," Energy, Elsevier, vol. 59(C), pages 248-254.
    12. Ali, Ahmed Hamza H. & Ahmed, Mahmoud & Abdel-Gaied, S.M., 2013. "Investigation of heat transfer and fluid flow in transitional regime inside a channel with staggered plates heated by radiation for PV/T system," Energy, Elsevier, vol. 59(C), pages 255-264.
    13. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    14. Yang, Hongwei & Li, Jun & Liu, Gonghui & Wang, Chao & Li, Mengbo & Jiang, Hailong, 2019. "Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling," Energy, Elsevier, vol. 179(C), pages 138-153.
    15. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    16. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    17. Song, Xianzhi & Shi, Yu & Li, Gensheng & Shen, Zhonghou & Hu, Xiaodong & Lyu, Zehao & Zheng, Rui & Wang, Gaosheng, 2018. "Numerical analysis of the heat production performance of a closed loop geothermal system," Renewable Energy, Elsevier, vol. 120(C), pages 365-378.
    18. Guo, Chao & Ji, Jie & Sun, Wei & Ma, Jinwei & He, Wei & Wang, Yanqiu, 2015. "Numerical simulation and experimental validation of tri-functional photovoltaic/thermal solar collector," Energy, Elsevier, vol. 87(C), pages 470-480.
    19. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    20. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:1018-1029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.