IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp337-342.html
   My bibliography  Save this article

Kinetics of palm oil ethanolysis

Author

Listed:
  • Narváez, P.C.
  • Noriega, M.A.
  • Cadavid, J.G.

Abstract

The effect of temperature and catalyst concentration on palm oil ethanolysis using 0.2 to 1 wt% NaOH based on the mass of palm oil was studied at temperatures ranging from 60 to 80 °C, keeping constant the ethanol to oil molar ratio (6:1). A 100% conversion of palm oil and a 96% yield of FAEE (fatty acid ethyl ester) were obtained after 60 min of reaction with 1 wt% NaOH at 70 °C. The increase of temperature between 60 °C and 70 °C on palm oil ethanolysis enhanced the reaction rate, but increase it from 70 °C to 80 °C had the contrary effect. The effect of temperature was higher during the first ten minutes of reaction. Increase of catalyst concentration between 0.2 wt% and 0.5 wt% strongly promoted the yield to FAEE, although this effect was not observed with further increments in the catalyst concentration. A second order kinetic model that predicts the behavior of the intermediate products and the effect of temperature and catalyst concentration was proposed and validated by the Fisher–Snedecor test of unbiased variances. Kinetic model parameters of palm oil ethanolysis and methanolysis were compared and demonstrated similar behavior and orders of magnitude.

Suggested Citation

  • Narváez, P.C. & Noriega, M.A. & Cadavid, J.G., 2015. "Kinetics of palm oil ethanolysis," Energy, Elsevier, vol. 83(C), pages 337-342.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:337-342
    DOI: 10.1016/j.energy.2015.02.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421500184X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Likozar, Blaž & Levec, Janez, 2014. "Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics ," Applied Energy, Elsevier, vol. 123(C), pages 108-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez Serafini, Mariana S. & Reinoso, Deborath M. & Tonetto, Gabriela M., 2018. "Response surface study and kinetic modelling of biodiesel synthesis catalyzed by zinc stearate," Energy, Elsevier, vol. 164(C), pages 264-274.
    2. Noriega, M.A. & Narváez, P.C., 2020. "Scale-up and cost analysis of biodiesel production using liquid-liquid film reactors: Reduction in the methanol consumption and investment cost," Energy, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    2. Mia Gotovuša & Ivan Pucko & Marko Racar & Fabio Faraguna, 2022. "Biodiesel Produced from Propanol and Longer Chain Alcohols—Synthesis and Properties," Energies, MDPI, vol. 15(14), pages 1-21, July.
    3. Sendzikiene, Egle & Sinkuniene, Dovile & Kazanceva, Irina & Kazancev, Kiril, 2016. "Optimization of low quality rapeseed oil transesterification with butanol by applying the response surface methodology," Renewable Energy, Elsevier, vol. 87(P1), pages 266-272.
    4. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    5. Al-Hwaiti, Mohammad S. & Alsbou, Eid M. & Al Haddad, Rawan M. & Osman, Ahmed I. & Jrai, Ahmed Abu & Al-Muhtaseb, Ala’a H. & Hasan, Ahmad O. & Morgan, Kevin & El-Sayed, El-Sayed M. & Al-Fatesh, Ahmed S, 2020. "Spatio-temporal analyses of extracted citrullus colocynthis seeds (Handal seed oil) as biofuel in internal combustion engine," Renewable Energy, Elsevier, vol. 166(C), pages 234-244.
    6. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    7. Ni, Zihao & Zhai, Yuling & Li, Fashe & Wang, Hua & Yang, Kai & Wang, Bican & Chen, Yu, 2020. "Reaction kinetics analysis of branched-chain alkyl esters of palmitic acid and cold flow properties," Renewable Energy, Elsevier, vol. 147(P1), pages 719-729.
    8. di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
    9. Chun Hsion Lim & Wei Xin Chua & Yi Wen Pang & Bing Shen How & Wendy Pei Qin Ng & Sin Yong Teng & Wei Dong Leong & Sue Lin Ngan & Hon Loong Lam, 2020. "A Diverse and Sustainable Biodiesel Supply Chain Optimisation Model Based on Properties Integration," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    10. Chandran, Davannendran, 2020. "Compatibility of diesel engine materials with biodiesel fuel," Renewable Energy, Elsevier, vol. 147(P1), pages 89-99.
    11. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    12. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    13. de Souza Rossi, Jessika & Perrone, Olavo Micali & Siqueira, Marcos Rechi & Volanti, Diogo Paschoalini & Gomes, Eleni & Da-Silva, Roberto & Boscolo, Mauricio, 2019. "Effect of lanthanide ion doping on Mg−Al mixed oxides as active acid−base catalysts for fatty acid ethyl ester synthesis," Renewable Energy, Elsevier, vol. 133(C), pages 367-372.
    14. Bora, Akash Pratim & Dhawane, Sumit H. & Anupam, Kumar & Halder, Gopinath, 2018. "Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst," Renewable Energy, Elsevier, vol. 121(C), pages 195-204.
    15. Işik, Mehmet Zerrakki & Aydin, Hüseyin, 2019. "Investigation on the effects of gasoline reactivity controlled compression ignition application in a diesel generator in high loads using safflower biodiesel blends," Renewable Energy, Elsevier, vol. 133(C), pages 177-189.
    16. Savaliya, Mehulkumar L. & Patel, Pooja J. & Dholakiya, Bharatkumar Z., 2017. "A simple and sustainable process for the preparation of fuel grade esters using PE-Si composite: A reusable catalytic system," Renewable Energy, Elsevier, vol. 109(C), pages 1-12.
    17. Faraguna, Fabio & Racar, Marko & Jukić, Ante, 2019. "Test method for determination of different biodiesels (fatty acid alkyl esters) content in diesel fuel using FTIR-ATR," Renewable Energy, Elsevier, vol. 133(C), pages 1231-1235.
    18. Ali, Chaudhry Haider & Qureshi, Abdul Sattar & Mbadinga, Serge Maurice & Liu, Jin-Feng & Yang, Shi-Zhong & Mu, Bo-Zhong, 2017. "Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: Central composite design approach," Renewable Energy, Elsevier, vol. 109(C), pages 93-100.
    19. Ganesan, Shangeetha & Nadarajah, Sivajothi & Khairuddean, Melati & Teh, Geok Bee, 2019. "Studies on lauric acid conversion to methyl ester via catalytic esterification using ammonium ferric sulphate," Renewable Energy, Elsevier, vol. 140(C), pages 9-16.
    20. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:337-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.