IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v80y2015icp213-226.html
   My bibliography  Save this article

An approach to stability analysis and entropy generation minimization in the single-phase natural circulation loops

Author

Listed:
  • Goudarzi, N.
  • Talebi, S.

Abstract

Single-phase natural circulation loops are frequently used in the systems which are related to the production of renewable energies. Natural circulation systems have low driving head and consequently, low heat removal capability. Thus, minimizing the entropy generation is a critical matter for designing an optimized natural circulation system performance. Moreover, the instability behavior of these systems is one of their most important disadvantages. In the present study, the entropy generation and non-linear stability analysis for a uniform and non-uniform diameter loop under single-phase natural circulation are investigated. In this work, a constant heat flux condition in the heater and constant wall temperature condition in the cooler are assumed. The effect of various parameters such as loop dimensions and heater power on the single-phase natural circulation stability and entropy generation in the loop are analyzed. Finally, the stability of the system in the form of a stability map is discussed, and entropy generation within the loop is calculated.

Suggested Citation

  • Goudarzi, N. & Talebi, S., 2015. "An approach to stability analysis and entropy generation minimization in the single-phase natural circulation loops," Energy, Elsevier, vol. 80(C), pages 213-226.
  • Handle: RePEc:eee:energy:v:80:y:2015:i:c:p:213-226
    DOI: 10.1016/j.energy.2014.11.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421401319X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.11.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jarungthammachote, Sompop, 2010. "Entropy generation analysis for fully developed laminar convection in hexagonal duct subjected to constant heat flux," Energy, Elsevier, vol. 35(12), pages 5374-5379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Kezhen & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2020. "Entropy generation versus transition time of heat exchanger during transient processes," Energy, Elsevier, vol. 200(C).
    2. Li, Haowen & Yang, Huachao & Xu, Chenxuan & Yan, Jianhua & Cen, Kefa & Ostrikov, Kostya (Ken) & Bo, Zheng, 2022. "Entropy generation analysis in supercapacitor modules based on a three-dimensional coupled thermal model," Energy, Elsevier, vol. 244(PB).
    3. Talebi, S. & Goudarzi, N. & Nourouzi Dehka, Sepideh, 2021. "Using organic fluids in natural circulation loop systems for absorbing of heat from low temperature renewable energy sources," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amani, E. & Nobari, M.R.H., 2011. "A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature," Energy, Elsevier, vol. 36(8), pages 4909-4918.
    2. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2014. "Temperature distribution, local and total entropy generation analyses in asymmetric cooling composite geometries with multiple nonlinearities: Effect of imperfect thermal contact," Energy, Elsevier, vol. 78(C), pages 218-234.
    3. Lucia, Umberto, 2014. "Thermodynamic approach to nano-properties of cell membrane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 185-191.
    4. Arjmandi, H.R. & Amani, E., 2015. "A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber," Energy, Elsevier, vol. 81(C), pages 706-718.
    5. Hajmohammadi, M.R. & Eskandari, H. & Saffar-Avval, M. & Campo, A., 2013. "A new configuration of bend tubes for compound optimization of heat and fluid flow," Energy, Elsevier, vol. 62(C), pages 418-424.
    6. Wang, Guangwei & Zhang, Jianliang & Chang, Weiwei & Li, Rongpeng & Li, Yanjiang & Wang, Chuan, 2018. "Structural features and gasification reactivity of biomass chars pyrolyzed in different atmospheres at high temperature," Energy, Elsevier, vol. 147(C), pages 25-35.
    7. Lucia, Umberto, 2014. "Entropy generation approach to cell systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 1-11.
    8. Mian, Inamullah & Li, Xian & Dacres, Omar D. & Wang, Jianjiang & Wei, Bo & Jian, Yiming & Zhong, Mei & Liu, Jingmei & Ma, Fengyun & Rahman, Noor, 2020. "Combustion kinetics and mechanism of biomass pellet," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:80:y:2015:i:c:p:213-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.