IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp149-153.html
   My bibliography  Save this article

A micro passive direct methanol fuel cell with high performance via plasma electrolytic oxidation on aluminum-based substrate

Author

Listed:
  • Deng, Huichao
  • Zhang, Xuelin
  • Ma, Zezhong
  • Chen, Hailong
  • Sun, Qiu
  • Zhang, Yufeng
  • Liu, Xiaowei

Abstract

In this paper, a μDMFC (micro direct methanol fuel cell) with high performance was fabricated by adopting aluminum alloys as a substrate for the first time. PEO (plasma electrolytic oxidation) was adopted to prepare an oxide coating on the substrate to make it electrically non-conductive and corrosion resistant. The PEO-treated substrate shows excellent corrosion resistance in the simulated DMFC environment. Based on the substrate, a μDMFC was fabricated by using stainless steel fiber felt as a cathode current collector that was supported by a perforate flow field on the end plate to reduce the contact resistance. The results show that the cell can provide a peak power density as high as 40.90 mW cm−2 at room temperature of ca. 298 K. The research work presented in this paper provides another way for the design and fabrication of μDMFC.

Suggested Citation

  • Deng, Huichao & Zhang, Xuelin & Ma, Zezhong & Chen, Hailong & Sun, Qiu & Zhang, Yufeng & Liu, Xiaowei, 2014. "A micro passive direct methanol fuel cell with high performance via plasma electrolytic oxidation on aluminum-based substrate," Energy, Elsevier, vol. 78(C), pages 149-153.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:149-153
    DOI: 10.1016/j.energy.2014.09.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214011281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.09.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhigang & Zhang, Xuelin & Nie, Li & Zhang, Yufeng & Liu, Xiaowei, 2014. "Elimination of water flooding of cathode current collector of micro passive direct methanol fuel cell by superhydrophilic surface treatment," Applied Energy, Elsevier, vol. 126(C), pages 107-112.
    2. Ko, Johan & Chippar, Purushothama & Ju, Hyunchul, 2010. "A one-dimensional, two-phase model for direct methanol fuel cells – Part I: Model development and parametric study," Energy, Elsevier, vol. 35(5), pages 2149-2159.
    3. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    4. Yao, Shi-Chune & Tang, Xudong & Hsieh, Cheng-Chieh & Alyousef, Yousef & Vladimer, Michael & Fedder, Gary K. & Amon, Cristina H., 2006. "Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development," Energy, Elsevier, vol. 31(5), pages 636-649.
    5. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    6. Li, Xianglin & Faghri, Amir, 2011. "Local entropy generation analysis on passive high-concentration DMFCs (direct methanol fuel cell) with different cell structures," Energy, Elsevier, vol. 36(1), pages 403-414.
    7. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
    2. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of physicochemical characterization of potassium-doped Nafion117 membrane and performance evaluation of air-breathing fuel cell in different alkali-methanol solutions," Energy, Elsevier, vol. 113(C), pages 1090-1098.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
    2. An, Myung-Gi & Mehmood, Asad & Hwang, Jinyeon & Ha, Heung Yong, 2016. "A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells," Energy, Elsevier, vol. 100(C), pages 217-226.
    3. Borghei, Maryam & Scotti, Gianmario & Kanninen, Petri & Weckman, Timo & Anoshkin, Ilya V. & Nasibulin, Albert G. & Franssila, Sami & Kauppinen, Esko I. & Kallio, Tanja & Ruiz, Virginia, 2014. "Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes," Energy, Elsevier, vol. 65(C), pages 612-620.
    4. Yuan, Zhenyu & Yang, Jie & Li, Xiaoyang & Wang, Shikai, 2016. "The micro-scale analysis of the micro direct methanol fuel cell," Energy, Elsevier, vol. 100(C), pages 10-17.
    5. Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.
    6. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    7. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Sang, Shengtian & Liu, Xiaowei, 2016. "Systemic modeling and analysis of DMFC stack for behavior prediction in system-level application," Energy, Elsevier, vol. 112(C), pages 1015-1023.
    8. Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
    9. Kim, Ah-Reum & Shin, Seungho & Um, Sukkee, 2016. "Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells," Energy, Elsevier, vol. 106(C), pages 378-389.
    10. Yuan, Zhenyu & Yang, Jie & Zhang, Yufeng, 2015. "A self-adaptive supply method of micro direct methanol fuel cell," Energy, Elsevier, vol. 91(C), pages 1064-1069.
    11. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
    12. Calabriso, Andrea & Borello, Domenico & Romano, Giovanni Paolo & Cedola, Luca & Del Zotto, Luca & Santori, Simone Giovanni, 2017. "Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation," Applied Energy, Elsevier, vol. 185(P2), pages 1245-1255.
    13. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Zou, Yuezhang & Liu, Xiaowei, 2016. "Development of a micro direct methanol fuel cell with heat control," Energy, Elsevier, vol. 116(P1), pages 978-985.
    14. Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
    15. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    16. Xue, Rui & Zhang, Yufeng & Liu, Xiaowei, 2017. "A novel cathode gas diffusion layer for water management of passive μ-DMFC," Energy, Elsevier, vol. 139(C), pages 535-541.
    17. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2014. "Performance evaluation of direct borohydride–hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes," Energy, Elsevier, vol. 76(C), pages 911-919.
    18. Yuan, Wei & Wang, Aoyu & Yan, Zhiguo & Tan, Zhenhao & Tang, Yong & Xia, Hongrong, 2016. "Visualization of two-phase flow and temperature characteristics of an active liquid-feed direct methanol fuel cell with diverse flow fields," Applied Energy, Elsevier, vol. 179(C), pages 85-98.
    19. Andersson, M. & Beale, S.B. & Espinoza, M. & Wu, Z. & Lehnert, W., 2016. "A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 180(C), pages 757-778.
    20. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:149-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.