IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v69y2014icp648-660.html
   My bibliography  Save this article

Aero-thermal performance improvements of unshrouded turbines through management of tip leakage and injection flows

Author

Listed:
  • Gao, Jie
  • Zheng, Qun
  • Zhang, Zhengyi
  • Jiang, Yuting

Abstract

The tip leakage flow not only is responsible for a significant amount of aerodynamic losses in a turbine stage, but also leads to high heat-loads on the tip region. The paper presents a numerical investigation of influences of tip injection on aero-thermal performance of the tip leakage flow for both flat tip and cavity tip in an unshrouded turbine rotor, in an attempt to improve the turbine blade tip aero-thermal performance by the management of tip leakage and injection flows. The effects studied include the sensitivities to the geometrical clearance height and the injection mass flow rate. The results show that, at all tip clearances, tip injection has a good effect on the control of the leakage flow, and it significantly reduces the sensitivities of turbine performances to the effects of the tip clearance height. With tip injection, cavity tip geometry does not play a major role in the turbine performance improvement, but it obtains the good film-cooling performance on the blade tip. Tip clearance height, blade tip geometry and injection mass flow rate have related effects on the blade tip aero-thermal performance, and the turbine blade tip obtains the best aero-thermal performance with an optimum injection mass flow rate.

Suggested Citation

  • Gao, Jie & Zheng, Qun & Zhang, Zhengyi & Jiang, Yuting, 2014. "Aero-thermal performance improvements of unshrouded turbines through management of tip leakage and injection flows," Energy, Elsevier, vol. 69(C), pages 648-660.
  • Handle: RePEc:eee:energy:v:69:y:2014:i:c:p:648-660
    DOI: 10.1016/j.energy.2014.03.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214003247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed, M.H. & Shaaban, S., 2013. "Optimization of blade pitch angle of an axial turbine used for wave energy conversion," Energy, Elsevier, vol. 56(C), pages 229-239.
    2. Rocha, P.A. Costa & Rocha, H.H. Barbosa & Carneiro, F.O. Moura & Vieira da Silva, M.E. & Bueno, A. Valente, 2014. "k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine," Energy, Elsevier, vol. 65(C), pages 412-418.
    3. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion," Energy, Elsevier, vol. 45(1), pages 570-580.
    4. Wu, Baigong & Zhang, Xueming & Chen, Jianmei & Xu, Mingqi & Li, Shuangxin & Li, Guangzhe, 2013. "Design of high-efficient and universally applicable blades of tidal stream turbine," Energy, Elsevier, vol. 60(C), pages 187-194.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zou, Zhengping & Shao, Fei & Li, Yiran & Zhang, Weihao & Berglund, Albin, 2017. "Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance," Energy, Elsevier, vol. 138(C), pages 167-184.
    2. Guo, Qiang & Zhou, Lingjiu & Wang, Zhengwei, 2016. "Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil," Renewable Energy, Elsevier, vol. 99(C), pages 390-397.
    3. Gao, Jie & Zheng, Qun & Xu, Tianbang & Dong, Ping, 2015. "Inlet conditions effect on tip leakage vortex breakdown in unshrouded axial turbines," Energy, Elsevier, vol. 91(C), pages 255-263.
    4. Gao, Jie & Zheng, Qun & Jia, Xiaoquan, 2014. "Performance improvement of shrouded turbines with the management of casing endwall interaction flows," Energy, Elsevier, vol. 75(C), pages 430-442.
    5. Li, Chunxi & Li, Xinying & Li, Pengmin & Ye, Xuemin, 2014. "Numerical investigation of impeller trimming effect on performance of an axial flow fan," Energy, Elsevier, vol. 75(C), pages 534-548.
    6. Ye, Xuemin & Li, Pengmin & Li, Chunxi & Ding, Xueliang, 2015. "Numerical investigation of blade tip grooving effect on performance and dynamics of an axial flow fan," Energy, Elsevier, vol. 82(C), pages 556-569.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Jie & Zheng, Qun & Xu, Tianbang & Dong, Ping, 2015. "Inlet conditions effect on tip leakage vortex breakdown in unshrouded axial turbines," Energy, Elsevier, vol. 91(C), pages 255-263.
    2. Paresh Halder & Hideki Takebe & Krisna Pawitan & Jun Fujita & Shuji Misumi & Tsumoru Shintake, 2020. "Turbine Characteristics of Wave Energy Conversion Device for Extraction Power Using Breaking Waves," Energies, MDPI, vol. 13(4), pages 1-17, February.
    3. Gao, Jie & Zheng, Qun & Jia, Xiaoquan, 2014. "Performance improvement of shrouded turbines with the management of casing endwall interaction flows," Energy, Elsevier, vol. 75(C), pages 430-442.
    4. Gato, L.M.C. & Maduro, A.R. & Carrelhas, A.A.D. & Henriques, J.C.C. & Ferreira, D.N., 2021. "Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results," Energy, Elsevier, vol. 216(C).
    5. López, I. & Castro, A. & Iglesias, G., 2015. "Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry," Energy, Elsevier, vol. 83(C), pages 89-103.
    6. Li, Chunxi & Li, Xinying & Li, Pengmin & Ye, Xuemin, 2014. "Numerical investigation of impeller trimming effect on performance of an axial flow fan," Energy, Elsevier, vol. 75(C), pages 534-548.
    7. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
    8. Guo, Peng & Zhang, Yongliang & Chen, Wenchuang, 2023. "Numerical analysis on a self-rectifying impulse turbine with U-shaped duct for oscillating water column wave energy conversion," Energy, Elsevier, vol. 274(C).
    9. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    10. Ramadan, A. & Mohamed, M.H. & Marzok, S.Y. & Montasser, O.A. & El Feky, A. & El Baz, A.R., 2014. "An artificial generation of a few specific wave conditions: New simulator design and experimental performance," Energy, Elsevier, vol. 69(C), pages 309-318.
    11. Halder, Paresh & Samad, Abdus & Thévenin, Dominique, 2017. "Improved design of a Wells turbine for higher operating range," Renewable Energy, Elsevier, vol. 106(C), pages 122-134.
    12. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    13. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    14. Xu, He-Yong & Qiao, Chen-Liang & Yang, Hui-Qiang & Ye, Zheng-Yin, 2017. "Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees," Energy, Elsevier, vol. 118(C), pages 1090-1109.
    15. Wu, Baigong & Zhang, Xueming & Chen, Jianmei & Xu, Mingqi & Li, Shuangxin & Li, Guangzhe, 2013. "Design of high-efficient and universally applicable blades of tidal stream turbine," Energy, Elsevier, vol. 60(C), pages 187-194.
    16. Li, Ao & Duan, Shuangping & Han, Rubing & Wang, Chaoyu, 2022. "Investigation on the dynamic thermal storage/release of the integrated PCM solar wall embedded with an evaporator," Renewable Energy, Elsevier, vol. 200(C), pages 1506-1516.
    17. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    18. Van Thinh Nguyen & Alina Santa Cruz & Sylvain S. Guillou & Mohamad N. Shiekh Elsouk & Jérôme Thiébot, 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)," Energies, MDPI, vol. 12(13), pages 1-20, June.
    19. Mohammad Souri & Farshad Moradi Kashkooli & Madjid Soltani & Kaamran Raahemifar, 2021. "Effect of Upstream Side Flow of Wind Turbine on Aerodynamic Noise: Simulation Using Open-Loop Vibration in the Rod in Rod-Airfoil Configuration," Energies, MDPI, vol. 14(4), pages 1-24, February.
    20. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie, 2016. "Empirical and numerical analysis of small wind turbine aerodynamic performance at a plateau terrain in Kenya," Renewable Energy, Elsevier, vol. 90(C), pages 377-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:648-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.