IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp1002-1025.html
   My bibliography  Save this article

Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products

Author

Listed:
  • Aysu, Tevfik
  • Küçük, M. Maşuk

Abstract

Slow pyrolysis of eastern giant fennel (Ferula orientalis L.) stalks has been performed in a fixed-bed tubular reactor with (ZnO, Al2O3) and without catalyst at six different temperatures ranging from 350 °C to 600 °C with heating rates of 15, 30, 50 °C/min. The amounts of bio-char, bio-oil and gas produced, as well as the compositions of the resulting bio-oils were determined by FT-IR and GC–MS. The effects of pyrolysis parameters such as temperature, catalyst and ratio of catalyst, particle size (Dp) and sweeping gas flow rate on product yields were investigated. According to results, temperature and catalyst seem to be the main factors effecting the conversion of F. orientalis L. into solid, liquid and gaseous products. The highest liquid yield (45.22%) including water was obtained with 15% zinc oxide catalyst at 500 °C temperature at a heating rate of 50 °C/min when 0.224 > Dp > 0.150 mm particle size raw material and 100 cm3/min of sweeping gas flow rate were used.

Suggested Citation

  • Aysu, Tevfik & Küçük, M. Maşuk, 2014. "Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products," Energy, Elsevier, vol. 64(C), pages 1002-1025.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:1002-1025
    DOI: 10.1016/j.energy.2013.11.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Özbay, Nurgül & Apaydın-Varol, Esin & Burcu Uzun, Başak & Eren Pütün, Ayşe, 2008. "Characterization of bio-oil obtained from fruit pulp pyrolysis," Energy, Elsevier, vol. 33(8), pages 1233-1240.
    2. Qian, Yejian & Zuo, Chengji & Tan, Jian & He, Jianhui, 2007. "Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass," Energy, Elsevier, vol. 32(3), pages 196-202.
    3. Williams, Paul T & Nugranad, Nittaya, 2000. "Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks," Energy, Elsevier, vol. 25(6), pages 493-513.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
    2. Medrano, J.A. & Oliva, M. & Ruiz, J. & García, L. & Arauzo, J., 2011. "Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed," Energy, Elsevier, vol. 36(4), pages 2215-2224.
    3. Xu, Yufu & Wang, Qiongjie & Hu, Xianguo & Li, Chuan & Zhu, Xifeng, 2010. "Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig," Energy, Elsevier, vol. 35(1), pages 283-287.
    4. Liu, Junhai & Zhuang, Yingbin & Li, Yan & Chen, Limei & Guo, Jingxue & Li, Demao & Ye, Naihao, 2013. "Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology," Energy, Elsevier, vol. 60(C), pages 69-76.
    5. Feng, Ping & Hao, Lifang & Huo, Chaofei & Wang, Ze & Lin, Weigang & Song, Wenli, 2014. "Rheological behavior of coal bio-oil slurries," Energy, Elsevier, vol. 66(C), pages 744-749.
    6. Wang, Ze & Lin, Weigang & Song, Wenli & Wu, Xuexing, 2012. "Pyrolysis of the lignocellulose fermentation residue by fixed-bed micro reactor," Energy, Elsevier, vol. 43(1), pages 301-305.
    7. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Pütün, Ayşe E. & Apaydın, Esin & Pütün, Ersan, 2004. "Rice straw as a bio-oil source via pyrolysis and steam pyrolysis," Energy, Elsevier, vol. 29(12), pages 2171-2180.
    9. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    10. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    11. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    12. Kumar, R. Sathish & Sivakumar, S. & Joshuva, A. & Deenadayalan, G. & Vishnuvardhan, R., 2021. "Bio-fuel production from Martynia annua L. seeds using slow pyrolysis reactor and its effects on diesel engine performance, combustion and emission characteristics," Energy, Elsevier, vol. 217(C).
    13. Trubetskaya, Anna & Grams, Jacek & Leahy, James J. & Johnson, Robert & Gallagher, Paul & Monaghan, Rory F.D. & Kwapinska, Marzena, 2020. "The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction," Renewable Energy, Elsevier, vol. 160(C), pages 998-1011.
    14. F.A. Ola & S.O. Jekayinfa, 2015. "Pyrolysis of sandbox (Hura crepitans) shell: Effect of pyrolysis parameters on biochar yield," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 61(4), pages 170-176.
    15. Jin, Sung Ho & Lee, Hyung Won & Ryu, Changkook & Jeon, Jong-Ki & Park, Young-Kwon, 2015. "Catalytic fast pyrolysis of Geodae-Uksae 1 over zeolites," Energy, Elsevier, vol. 81(C), pages 41-46.
    16. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    17. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Experimental and numerical simulation study of oxycombustion of fast pyrolysis bio-oil from lignocellulosic biomass," Energy, Elsevier, vol. 126(C), pages 854-867.
    18. Yuan, X.Z. & Li, H. & Zeng, G.M. & Tong, J.Y. & Xie, W., 2007. "Sub- and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture," Energy, Elsevier, vol. 32(11), pages 2081-2088.
    19. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
    20. Özbay, Nurgül & Apaydın-Varol, Esin & Burcu Uzun, Başak & Eren Pütün, Ayşe, 2008. "Characterization of bio-oil obtained from fruit pulp pyrolysis," Energy, Elsevier, vol. 33(8), pages 1233-1240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:1002-1025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.