IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v62y2013icp248-254.html
   My bibliography  Save this article

Exergy analysis of dual-stage nanofiltration seawater desalination

Author

Listed:
  • Liu, Jie
  • Yuan, Junsheng
  • Xie, Lixin
  • Ji, Zhiyong

Abstract

Exergy analysis is a powerful tool for determining the efficiency of processes that influence system performance. Thus, the exergy of dual-stage NF (nanofiltration) seawater desalination was analyzed. Three different processes were simulated by Dow's Reverse Osmosis System Analysis, and the exergies were compared. The results indicated that the main exergy destruction in the conventional process occurred in the membrane and concentration stream valves. To reduce the exergy and energy consumption, concentration blending and an energy recovery device were applied in the improved process, which reduced the specific energy consumption and enhanced the exergetic efficiency and recovery ratio. The calculated specific energy consumption was reduced to 2.09 kWh/m3, and the system recovery ratio was increased to reach 42.78% under the condition specified in this paper. Thus, the development of a novel energy-saving membrane module and an energy recovery device is important in reducing energy consumption in dual-stage NF seawater desalination.

Suggested Citation

  • Liu, Jie & Yuan, Junsheng & Xie, Lixin & Ji, Zhiyong, 2013. "Exergy analysis of dual-stage nanofiltration seawater desalination," Energy, Elsevier, vol. 62(C), pages 248-254.
  • Handle: RePEc:eee:energy:v:62:y:2013:i:c:p:248-254
    DOI: 10.1016/j.energy.2013.07.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.07.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharqawy, Mostafa H. & Zubair, Syed M. & Lienhard, John H., 2011. "Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis," Energy, Elsevier, vol. 36(11), pages 6617-6626.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanco-Marigorta, A.M. & Lozano-Medina, A. & Marcos, J.D., 2017. "A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants," Energy, Elsevier, vol. 137(C), pages 752-760.
    2. Ghasemi, Mostafa & Wan Daud, Wan Ramli & Alam, Javed & Ilbeygi, Hamid & Sedighi, Mehdi & Ismail, Ahmad Fauzi & Yazdi, Mohammad H. & Aljlil, Saad A., 2016. "Treatment of two different water resources in desalination and microbial fuel cell processes by poly sulfone/Sulfonated poly ether ether ketone hybrid membrane," Energy, Elsevier, vol. 96(C), pages 303-313.
    3. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    4. Usón, Sergio & Uche, Javier & Martínez, Amaya & del Amo, Alejandro & Acevedo, Luis & Bayod, Ángel, 2019. "Exergy assessment and exergy cost analysis of a renewable-based and hybrid trigeneration scheme for domestic water and energy supply," Energy, Elsevier, vol. 168(C), pages 662-683.
    5. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Altaee, Ali & Zhou, John & Alhathal Alanezi, Adnan & Zaragoza, Guillermo, 2017. "Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters," Applied Energy, Elsevier, vol. 206(C), pages 303-311.
    2. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    3. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).
    4. Blanco-Marigorta, Ana M. & Masi, Marco & Manfrida, Giampaolo, 2014. "Exergo-environmental analysis of a reverse osmosis desalination plant in Gran Canaria," Energy, Elsevier, vol. 76(C), pages 223-232.
    5. Wan, Chun Feng & Chung, Tai-Shung, 2018. "Techno-economic evaluation of various RO+PRO and RO+FO integrated processes," Applied Energy, Elsevier, vol. 212(C), pages 1038-1050.
    6. Blanco-Marigorta, A.M. & Lozano-Medina, A. & Marcos, J.D., 2017. "A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants," Energy, Elsevier, vol. 137(C), pages 752-760.
    7. Zahedi, Rahim & Ahmadi, Abolfazl & Dashti, Reza, 2021. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Hai, Tao & Zoghi, Mohammad & Abed, Hooman & Chauhan, Bhupendra Singh & Ahmed, Ahmed Najat, 2023. "Exergy-economic study and multi-objective optimization of a geothermal-based combined organic flash cycle and PEMFC for poly-generation purpose," Energy, Elsevier, vol. 268(C).
    9. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Stand-alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis)," Energy, Elsevier, vol. 86(C), pages 423-435.
    10. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Maximize the operating profit of a SWRO-PRO integrated process for optimal water production and energy recovery," Renewable Energy, Elsevier, vol. 94(C), pages 304-313.
    11. Eveloy, Valerie & Rodgers, Peter & Al Alili, Ali, 2017. "Multi-objective optimization of a pressurized solid oxide fuel cell – gas turbine hybrid system integrated with seawater reverse osmosis," Energy, Elsevier, vol. 123(C), pages 594-614.
    12. Qureshi, Bilal Ahmed & Zubair, Syed M., 2015. "Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems," Energy, Elsevier, vol. 93(P1), pages 256-265.
    13. Al-Sulaiman, Fahad A. & Prakash Narayan, G. & Lienhard, John H., 2013. "Exergy analysis of a high-temperature-steam-driven, varied-pressure, humidification–dehumidification system coupled with reverse osmosis," Applied Energy, Elsevier, vol. 103(C), pages 552-561.
    14. Kim, Minseok & Kim, Suhan, 2018. "Practical limit of energy production from seawater by full-scale pressure retarded osmosis," Energy, Elsevier, vol. 158(C), pages 373-382.
    15. Tawalbeh, Muhammad & Al-Othman, Amani & Abdelwahab, Noun & Alami, Abdul Hai & Olabi, Abdul Ghani, 2021. "Recent developments in pressure retarded osmosis for desalination and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    17. Huang, Xiaojian & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying & María Ponce-Ortega, José & El-Halwagi, Mahmoud M., 2018. "Synthesis and dual-objective optimization of industrial combined heat and power plants compromising the water–energy nexus," Applied Energy, Elsevier, vol. 224(C), pages 448-468.
    18. Zhou, Jincheng & Hai, Tao & Ali, Masood Ashraf & Shamseldin, Mohamed A. & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Alali, Abdulrhman Fahmi, 2023. "Waste heat recovery of a wind turbine for poly-generation purpose: Feasibility analysis, environmental impact assessment, and parametric optimization," Energy, Elsevier, vol. 263(PD).
    19. Touati, Khaled & Tadeo, Fernando & Elfil, Hamza, 2017. "Osmotic energy recovery from Reverse Osmosis using two-stage Pressure Retarded Osmosis," Energy, Elsevier, vol. 132(C), pages 213-224.
    20. Jedrzej Bylka & Tomasz Mróz, 2020. "Exergy Evaluation of a Water Distribution System," Energies, MDPI, vol. 13(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:62:y:2013:i:c:p:248-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.