IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp527-534.html
   My bibliography  Save this article

An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system

Author

Listed:
  • Jana, Amiya K.
  • Maiti, Debadrita

Abstract

Batch distillation is an irreversible process and consumes many times the theoretical minimum energy requirement. The present work focuses on the development of an internally heat integrated batch distillation with a jacketed still (IHIBDJS) aiming to reduce the degree of irreversibility towards zero. The IHIBDJS scheme consists of a rectifying tower equipped with an overhead condenser and a still pot or reboiler that surrounds the tower concentrically. For improving the energy efficiency by the reduction of external energy input, the rectifier is operated at an elevated pressure so that a thermal driving force should exist between the rectifying tower and the concentric still. For this purpose, an isentropic compression system is mounted in the reboiled vapor line. Aiming to reduce further the degree of process irreversibility, we propose an additional thermal arrangement into the IHIBDJS configuration that couples the overhead vapor with the reboiler liquid, thereby reducing further the external heat consumption. It is investigated for a reactive batch distillation column that the effective use of internal heat sources would make the heat integrated column an independent scheme of external heat source.

Suggested Citation

  • Jana, Amiya K. & Maiti, Debadrita, 2013. "An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system," Energy, Elsevier, vol. 57(C), pages 527-534.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:527-534
    DOI: 10.1016/j.energy.2013.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213003988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maiti, Debadrita & Jana, Amiya K. & Samanta, Amar Nath, 2011. "A novel heat integrated batch distillation scheme," Applied Energy, Elsevier, vol. 88(12), pages 5221-5225.
    2. Jana, Amiya K., 2010. "Heat integrated distillation operation," Applied Energy, Elsevier, vol. 87(5), pages 1477-1494, May.
    3. Babu, G. Uday Bhaskar & Aditya, R. & Jana, Amiya K., 2012. "Economic feasibility of a novel energy efficient middle vessel batch distillation to reduce energy use," Energy, Elsevier, vol. 45(1), pages 626-633.
    4. Olujić, Ž. & Sun, L. & de Rijke, A. & Jansens, P.J., 2006. "Conceptual design of an internally heat integrated propylene-propane splitter," Energy, Elsevier, vol. 31(15), pages 3083-3096.
    5. Suphanit, B., 2010. "Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution," Energy, Elsevier, vol. 35(3), pages 1505-1514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Young Han, 2014. "Application of partially diabatic divided wall column to floating liquefied natural gas plant," Energy, Elsevier, vol. 70(C), pages 435-443.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Modla, G. & Lang, P., 2013. "Heat pump systems with mechanical compression for batch distillation," Energy, Elsevier, vol. 62(C), pages 403-417.
    2. Shahandeh, H. & Ivakpour, J. & Kasiri, N., 2014. "Internal and external HIDiCs (heat-integrated distillation columns) optimization by genetic algorithm," Energy, Elsevier, vol. 64(C), pages 875-886.
    3. Markowski, Mariusz & Trafczynski, Marian & Kisielewski, Piotr, 2022. "The dynamic model of a rectification heat exchanger using the concept of heat-integrated distillation column," Energy, Elsevier, vol. 256(C).
    4. Modla, G., 2013. "Energy saving methods for the separation of a minimum boiling point azeotrope using an intermediate entrainer," Energy, Elsevier, vol. 50(C), pages 103-109.
    5. Shahandeh, Hossein & Ivakpour, Javad & Kasiri, Norollah, 2014. "Feasibility study of heat-integrated distillation columns using rigorous optimization," Energy, Elsevier, vol. 74(C), pages 662-674.
    6. Shahandeh, Hossein & Jafari, Mina & Kasiri, Norollah & Ivakpour, Javad, 2015. "Economic optimization of heat pump-assisted distillation columns in methanol-water separation," Energy, Elsevier, vol. 80(C), pages 496-508.
    7. Babu, G. Uday Bhaskar & Aditya, R. & Jana, Amiya K., 2012. "Economic feasibility of a novel energy efficient middle vessel batch distillation to reduce energy use," Energy, Elsevier, vol. 45(1), pages 626-633.
    8. Chen, Shiqing & Dong, Xuezhi & Xu, Jian & Zhang, Hualiang & Gao, Qing & Tan, Chunqing, 2019. "Thermodynamic evaluation of the novel distillation column of the air separation unit with integration of liquefied natural gas (LNG) regasification," Energy, Elsevier, vol. 171(C), pages 341-359.
    9. Kiran, Bandaru & Jana, Amiya K. & Samanta, Amar Nath, 2012. "A novel intensified heat integration in multicomponent distillation," Energy, Elsevier, vol. 41(1), pages 443-453.
    10. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    11. Jana, Amiya K., 2016. "A new divided-wall heat integrated distillation column (HIDiC) for batch processing: Feasibility and analysis," Applied Energy, Elsevier, vol. 172(C), pages 199-206.
    12. Suphanit, B., 2011. "Optimal heat distribution in the internally heat-integrated distillation column (HIDiC)," Energy, Elsevier, vol. 36(7), pages 4171-4181.
    13. Khalili, N. & Kasiri, N. & Ivakpour, J. & Khalili-Garakani, A. & Khanof, M.H., 2020. "Optimal configuration of ternary distillation columns using heat integration with external heat exchangers," Energy, Elsevier, vol. 191(C).
    14. Cui, Chengtian & Li, Xingang & Guo, Dongrong & Sun, Jinsheng, 2017. "Towards energy efficient styrene distillation scheme: From grassroots design to retrofit," Energy, Elsevier, vol. 134(C), pages 193-205.
    15. Maiti, Debadrita & Jana, Amiya K. & Samanta, Amar Nath, 2013. "Intensified thermal integration in batch reactive distillation," Applied Energy, Elsevier, vol. 103(C), pages 290-297.
    16. Jana, Amiya K., 2016. "An internal thermal integration arrangement for multicomponent batch rectifier: 1. Feasibility and analysis," Energy, Elsevier, vol. 115(P1), pages 230-237.
    17. Kim, Young Han, 2016. "Energy saving of benzene separation process for environmentally friendly gasoline using an extended DWC (divided wall column)," Energy, Elsevier, vol. 100(C), pages 58-65.
    18. Areej Javed & Afaq Hassan & Muhammad Babar & Umair Azhar & Asim Riaz & Rana Mujahid & Tausif Ahmad & Muhammad Mubashir & Hooi Ren Lim & Pau Loke Show & Kuan Shiong Khoo, 2022. "A Comparison of the Exergy Efficiencies of Various Heat-Integrated Distillation Columns," Energies, MDPI, vol. 15(18), pages 1-15, September.
    19. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    20. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:527-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.