IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v191y2020ics0360544219321747.html
   My bibliography  Save this article

Optimal configuration of ternary distillation columns using heat integration with external heat exchangers

Author

Listed:
  • Khalili, N.
  • Kasiri, N.
  • Ivakpour, J.
  • Khalili-Garakani, A.
  • Khanof, M.H.

Abstract

The subject of energy saving in distillation column sequencing is of critical importance. Heat integration in a multicomponent separation can be industrialized by saving considerable energy and cost. In this work, external heat-integrated distillation column with external heat exchanger has been studied and the annual cost function has been optimized using Genetic Algorithm. Introducing the layout and binary matrices enabled the investigation of all possible locations for the heat exchanger arrangement successfully. Moreover, exchangers heat loads and compressors pressure, have also been considered as optimization variables. Benzene, toluene, xylene and n-alkanes, separations have been studied as case studies. It has been demonstrated that the proposed optimization method in the alkane separation case decreased the total annual cost by 22.6% in comparison with the proposed thermally coupled distillation sequence columns. The heat integration of external heat exchangers in an external heat-integrated distillation column configuration and the proposed dived-wall column resulted in decreasing the total annual cost by 17% and 39% respectively, in comparison with conventional distillation columns.

Suggested Citation

  • Khalili, N. & Kasiri, N. & Ivakpour, J. & Khalili-Garakani, A. & Khanof, M.H., 2020. "Optimal configuration of ternary distillation columns using heat integration with external heat exchangers," Energy, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219321747
    DOI: 10.1016/j.energy.2019.116479
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219321747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "A new search space reduction method based on exergy analysis for distillation columns synthesis," Energy, Elsevier, vol. 116(P1), pages 795-811.
    2. Shahandeh, Hossein & Jafari, Mina & Kasiri, Norollah & Ivakpour, Javad, 2015. "Economic optimization of heat pump-assisted distillation columns in methanol-water separation," Energy, Elsevier, vol. 80(C), pages 496-508.
    3. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    4. Suphanit, B., 2011. "Optimal heat distribution in the internally heat-integrated distillation column (HIDiC)," Energy, Elsevier, vol. 36(7), pages 4171-4181.
    5. Olujić, Ž. & Sun, L. & de Rijke, A. & Jansens, P.J., 2006. "Conceptual design of an internally heat integrated propylene-propane splitter," Energy, Elsevier, vol. 31(15), pages 3083-3096.
    6. Suphanit, B., 2010. "Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution," Energy, Elsevier, vol. 35(3), pages 1505-1514.
    7. Shahandeh, H. & Ivakpour, J. & Kasiri, N., 2014. "Internal and external HIDiCs (heat-integrated distillation columns) optimization by genetic algorithm," Energy, Elsevier, vol. 64(C), pages 875-886.
    8. Shahandeh, Hossein & Ivakpour, Javad & Kasiri, Norollah, 2014. "Feasibility study of heat-integrated distillation columns using rigorous optimization," Energy, Elsevier, vol. 74(C), pages 662-674.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eyvazi-Abhari, Nargess & Khalili-Garakani, Amirhossein & Kasiri, Norollah, 2023. "Reaction/distillation matrix algorithm development to cover sequences containing reactive HIDiC: Validation in optimized process of dimethyl carbonate production," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahandeh, Hossein & Jafari, Mina & Kasiri, Norollah & Ivakpour, Javad, 2015. "Economic optimization of heat pump-assisted distillation columns in methanol-water separation," Energy, Elsevier, vol. 80(C), pages 496-508.
    2. Shahandeh, Hossein & Ivakpour, Javad & Kasiri, Norollah, 2014. "Feasibility study of heat-integrated distillation columns using rigorous optimization," Energy, Elsevier, vol. 74(C), pages 662-674.
    3. Shahandeh, H. & Ivakpour, J. & Kasiri, N., 2014. "Internal and external HIDiCs (heat-integrated distillation columns) optimization by genetic algorithm," Energy, Elsevier, vol. 64(C), pages 875-886.
    4. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    5. Kim, Young Han, 2015. "Energy saving of side-column DWCs for quaternary separation," Energy, Elsevier, vol. 86(C), pages 617-626.
    6. Kim, Young Han, 2016. "Energy saving of benzene separation process for environmentally friendly gasoline using an extended DWC (divided wall column)," Energy, Elsevier, vol. 100(C), pages 58-65.
    7. Modla, G. & Lang, P., 2013. "Heat pump systems with mechanical compression for batch distillation," Energy, Elsevier, vol. 62(C), pages 403-417.
    8. Chen, Shiqing & Dong, Xuezhi & Xu, Jian & Zhang, Hualiang & Gao, Qing & Tan, Chunqing, 2019. "Thermodynamic evaluation of the novel distillation column of the air separation unit with integration of liquefied natural gas (LNG) regasification," Energy, Elsevier, vol. 171(C), pages 341-359.
    9. Cui, Chengtian & Li, Xingang & Guo, Dongrong & Sun, Jinsheng, 2017. "Towards energy efficient styrene distillation scheme: From grassroots design to retrofit," Energy, Elsevier, vol. 134(C), pages 193-205.
    10. Eyvazi-Abhari, Nargess & Khalili-Garakani, Amirhossein & Kasiri, Norollah, 2023. "Reaction/distillation matrix algorithm development to cover sequences containing reactive HIDiC: Validation in optimized process of dimethyl carbonate production," Energy, Elsevier, vol. 276(C).
    11. Van Duc Long, Nguyen & Lee, Moonyong, 2013. "A novel NGL (natural gas liquid) recovery process based on self-heat recuperation," Energy, Elsevier, vol. 57(C), pages 663-670.
    12. Jana, Amiya K. & Maiti, Debadrita, 2013. "An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system," Energy, Elsevier, vol. 57(C), pages 527-534.
    13. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    14. Kiran, Bandaru & Jana, Amiya K. & Samanta, Amar Nath, 2012. "A novel intensified heat integration in multicomponent distillation," Energy, Elsevier, vol. 41(1), pages 443-453.
    15. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    16. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    17. Qiu, Peng & Huang, Bo & Dai, Zhenghua & Wang, Fuchen, 2019. "Data-driven analysis and optimization of externally heat-integrated distillation columns (EHIDiC)," Energy, Elsevier, vol. 189(C).
    18. Kim, Young Han, 2014. "Application of partially diabatic divided wall column to floating liquefied natural gas plant," Energy, Elsevier, vol. 70(C), pages 435-443.
    19. Suphanit, B., 2011. "Optimal heat distribution in the internally heat-integrated distillation column (HIDiC)," Energy, Elsevier, vol. 36(7), pages 4171-4181.
    20. Markowski, Mariusz & Trafczynski, Marian & Kisielewski, Piotr, 2022. "The dynamic model of a rectification heat exchanger using the concept of heat-integrated distillation column," Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219321747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.