IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v44y2012i1p584-592.html
   My bibliography  Save this article

An assessment of the global UV solar radiation under various sky conditions in Maceió-Northeastern Brazil

Author

Listed:
  • Porfirio, Anthony Carlos Silva
  • De Souza, José Leonaldo
  • Lyra, Gustavo Bastos
  • Maringolo Lemes, Marco Antonio

Abstract

The first observations of UV (290–400 nm) ever made at an agro-meteorological/radiometric station located in the metropolitan region of Maceió (9°28′S, 35°49′W, 127 m), Northeast Brazil, during 2008 are reported in this work. Solar UV radiation variability in different time scales and its fractional composition in the global solar radiation (G), that is, FUV = UV/G is investigated under different sky conditions. The maximum daily UV solar irradiation (HUVd) was 0.85 MJ m−2 and the annual average 0.55 MJ m−2. It was noticed that the largest contribution to the annual variation of the daily totals of UV are attributed to cloudiness than seasonality. Under partially cloudy sky, multi reflection was responsible for an increase of 11.1 and 18.8% in the UV levels, relatively to clear days. FUV is inversely proportional to the global atmospheric transmittance (KT); the daily percentage variation of FUV was in the range of 2.33–2.95% in clear days and from 2.60 to 3.59% in cloudy days, with the annual daily average value of 2.8%. Linear empirical relations between the UV and G components for hourly and daily intervals under different KT intervals were established and recommended, with the coefficient of determination (R2) generally above 0.91.

Suggested Citation

  • Porfirio, Anthony Carlos Silva & De Souza, José Leonaldo & Lyra, Gustavo Bastos & Maringolo Lemes, Marco Antonio, 2012. "An assessment of the global UV solar radiation under various sky conditions in Maceió-Northeastern Brazil," Energy, Elsevier, vol. 44(1), pages 584-592.
  • Handle: RePEc:eee:energy:v:44:y:2012:i:1:p:584-592
    DOI: 10.1016/j.energy.2012.05.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212004392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.05.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilmaç, Ş. & Topçu, S. & Akman, M.S., 1996. "A study of solar ultraviolet radiation at Istanbul," Energy, Elsevier, vol. 21(3), pages 189-195.
    2. Jacovides, C.P. & Assimakopoulos, V.D. & Tymvios, F.S. & Theophilou, K. & Asimakopoulos, D.N., 2006. "Solar global UV (280–380nm) radiation and its relationship with solar global radiation measured on the island of Cyprus," Energy, Elsevier, vol. 31(14), pages 2728-2738.
    3. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2011. "Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil," Renewable Energy, Elsevier, vol. 36(1), pages 169-178.
    4. Leal, S.S. & Tíba, C. & Piacentini, R., 2011. "Daily UV radiation modeling with the usage of statistical correlations and artificial neural networks," Renewable Energy, Elsevier, vol. 36(12), pages 3337-3344.
    5. Jacovides, C.P. & Boland, J. & Rizou, D. & Kaltsounides, N.A. & Theoharatos, G.A., 2012. "School Students participation in monitoring solar radiation components: Preliminary results for UVB and UVA solar radiant fluxes," Renewable Energy, Elsevier, vol. 39(1), pages 367-374.
    6. Cañada, J & Pedros, G & Bosca, J.V, 2003. "Relationships between UV (0.290–0.385 μm) and broad band solar radiation hourly values in Valencia and Córdoba, Spain," Energy, Elsevier, vol. 28(3), pages 199-217.
    7. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2009. "Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil," Applied Energy, Elsevier, vol. 86(3), pages 299-309, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lunche & Gong, Wei & Hu, Bo & Feng, Lan & Lin, Aiwen & Zhang, Ming, 2014. "Long-term variations of ultraviolet radiation in China from measurements and model reconstructions," Energy, Elsevier, vol. 78(C), pages 928-938.
    2. Wang, Lunche & Gong, Wei & Ma, Yingying & Hu, Bo & Wang, Wenling & Zhang, Miao, 2013. "Analysis of ultraviolet radiation in Central China from observation and estimation," Energy, Elsevier, vol. 59(C), pages 764-774.
    3. Wang, Lunche & Gong, Wei & Luo, Ming & Wang, Wenfeng & Hu, Bo & Zhang, Ming, 2015. "Comparison of different UV models for cloud effect study," Energy, Elsevier, vol. 80(C), pages 695-705.
    4. Ghoneim, Adel A. & Kadad, Ibrahim M. & Altouq, Majida S., 2013. "Statistical analysis of solar UVB and global radiation in Kuwait," Energy, Elsevier, vol. 60(C), pages 23-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghoneim, Adel A. & Kadad, Ibrahim M. & Altouq, Majida S., 2013. "Statistical analysis of solar UVB and global radiation in Kuwait," Energy, Elsevier, vol. 60(C), pages 23-34.
    2. Wang, Lunche & Gong, Wei & Ma, Yingying & Hu, Bo & Wang, Wenling & Zhang, Miao, 2013. "Analysis of ultraviolet radiation in Central China from observation and estimation," Energy, Elsevier, vol. 59(C), pages 764-774.
    3. Lisdelys González-Rodríguez & Amauri Pereira de Oliveira & Lien Rodríguez-López & Jorge Rosas & David Contreras & Ana Carolina Baeza, 2021. "A Study of UVER in Santiago, Chile Based on Long-Term In Situ Measurements (Five Years) and Empirical Modelling," Energies, MDPI, vol. 14(2), pages 1-20, January.
    4. Wang, Lunche & Gong, Wei & Hu, Bo & Feng, Lan & Lin, Aiwen & Zhang, Ming, 2014. "Long-term variations of ultraviolet radiation in China from measurements and model reconstructions," Energy, Elsevier, vol. 78(C), pages 928-938.
    5. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2011. "Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil," Renewable Energy, Elsevier, vol. 36(1), pages 169-178.
    6. Utrillas, M.P. & Marín, M.J. & Esteve, A.R. & Salazar, G. & Suárez, H. & Gandía, S. & Martínez-Lozano, J.A., 2018. "Relationship between erythemal UV and broadband solar irradiation at high altitude in Northwestern Argentina," Energy, Elsevier, vol. 162(C), pages 136-147.
    7. Ibrahim M. Kadad & Ashraf A. Ramadan & Kandil M. Kandil & Adel A. Ghoneim, 2022. "Relationship between Ultraviolet-B Radiation and Broadband Solar Radiation under All Sky Conditions in Kuwait Hot Climate," Energies, MDPI, vol. 15(9), pages 1-19, April.
    8. Kalogirou, S.A. & Pashiardis, S. & Pashiardi, A., 2017. "Statistical analysis and inter-comparison of the global solar radiation at two sites in Cyprus," Renewable Energy, Elsevier, vol. 101(C), pages 1102-1123.
    9. Wang, Lunche & Gong, Wei & Li, Chen & Lin, Aiwen & Hu, Bo & Ma, Yingying, 2013. "Measurement and estimation of photosynthetically active radiation from 1961 to 2011 in Central China," Applied Energy, Elsevier, vol. 111(C), pages 1010-1017.
    10. Purohit, Ishan & Purohit, Pallav, 2015. "Inter-comparability of solar radiation databases in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 735-747.
    11. Wang, Lunche & Gong, Wei & Luo, Ming & Wang, Wenfeng & Hu, Bo & Zhang, Ming, 2015. "Comparison of different UV models for cloud effect study," Energy, Elsevier, vol. 80(C), pages 695-705.
    12. Eltbaakh, Yousef A. & Ruslan, M.H. & Alghoul, M.A. & Othman, M.Y. & Sopian, K. & Fadhel, M.I., 2011. "Measurement of total and spectral solar irradiance: Overview of existing research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1403-1426, April.
    13. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2009. "Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil," Applied Energy, Elsevier, vol. 86(3), pages 299-309, March.
    14. Anjorin O.F. & Utah E.U & Likita M.S, 2014. "Estimation of Hourly Photo synthetically- Active Radiation (PAR) From Hourly Global Solar Radiation (GSR) In Jos, Nigeria," Asian Review of Environmental and Earth Sciences, Asian Online Journal Publishing Group, vol. 1(2), pages 43-50.
    15. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    16. Janjai, S. & Pankaew, P. & Laksanaboonsong, J., 2009. "A model for calculating hourly global solar radiation from satellite data in the tropics," Applied Energy, Elsevier, vol. 86(9), pages 1450-1457, September.
    17. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Hu, Bo & Gong, Wei, 2016. "Modeling and comparison of hourly photosynthetically active radiation in different ecosystems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 436-453.
    18. Hu, Bo & Liu, Hui & Wang, Yuesi, 2016. "Investigation of the variability of photosynthetically active radiation in the Tibetan Plateau, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 240-248.
    19. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    20. Leal, S.S. & Tíba, C. & Piacentini, R., 2011. "Daily UV radiation modeling with the usage of statistical correlations and artificial neural networks," Renewable Energy, Elsevier, vol. 36(12), pages 3337-3344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:44:y:2012:i:1:p:584-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.