IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i7p1177-1184.html
   My bibliography  Save this article

Electricity consumption by battery-powered consumer electronics: A household-level survey

Author

Listed:
  • McAllister, J. Andrew
  • Farrell, Alexander E.

Abstract

The rapid proliferation of battery-powered consumer electronics and their reliance on inefficient linear transformers has been suggested to be an important part of the rapid growth in “miscellaneous” electricity consumption in recent years, but detailed data are scarce. We conducted a survey of 34 randomly selected households (HHs) in Northern California about the number, type, and usage of consumer electronics. We also measured the energy consumption of 85 typical consumer electronic devices through various parts of the charge cycle. These primary data were supplemented by national sales information for consumer electronics. Results indicate that typical HHs own 8.4 rechargeable devices, which have a total average demand of 12–17W per HH. Statewide, this amounts to 160–220MW of demand, with the peak occurring in the late evening, and about 1600GWh per year. Only about 15% of this energy is used for battery charging, the rest is lost as waste heat during no-load and charge maintenance periods. Technical options to increase the efficiency of these devices, and the research and policy steps needed to realize these savings are discussed.

Suggested Citation

  • McAllister, J. Andrew & Farrell, Alexander E., 2007. "Electricity consumption by battery-powered consumer electronics: A household-level survey," Energy, Elsevier, vol. 32(7), pages 1177-1184.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:7:p:1177-1184
    DOI: 10.1016/j.energy.2006.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206001915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosen, Karen & Meier, Alan, 2000. "Power measurements and national energy consumption of televisions and videocassette recorders in the USA," Energy, Elsevier, vol. 25(3), pages 219-232.
    2. Sanchez, Marla C & Koomey, Jonathan G & Moezzi, Mithra M & Meier, Alan & Huber, Wolfgang, 1998. "Miscellaneous electricity in US homes: Historical decomposition and future trends," Energy Policy, Elsevier, vol. 26(8), pages 585-593, July.
    3. Kawamoto, Kaoru & Koomey, Jonathan G & Nordman, Bruce & Brown, Richard E & Piette, Mary Ann & Ting, Michael & Meier, Alan K, 2002. "Electricity used by office equipment and network equipment in the US," Energy, Elsevier, vol. 27(3), pages 255-269.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahin, Mustafa Cagri & Aydinalp Koksal, Merih, 2014. "Standby electricity consumption and saving potentials of Turkish households," Applied Energy, Elsevier, vol. 114(C), pages 531-538.
    2. Pereira, Iraci Miranda & Assis, Eleonora Sad de, 2013. "Urban energy consumption mapping for energy management," Energy Policy, Elsevier, vol. 59(C), pages 257-269.
    3. Rosen, Karen & Meier, Alan, 2000. "Power measurements and national energy consumption of televisions and videocassette recorders in the USA," Energy, Elsevier, vol. 25(3), pages 219-232.
    4. Watanabe, Chihiro & Kishioka, Miharu & Carvajal, Carlos Antonio, 2005. "IT substitution for energy leads to a resilient structure for a survival strategy of Japan's electric power industry," Energy Policy, Elsevier, vol. 33(8), pages 1069-1084, May.
    5. Larsen, Bodil Merethe & Nesbakken, Runa, 2004. "Household electricity end-use consumption: results from econometric and engineering models," Energy Economics, Elsevier, vol. 26(2), pages 179-200, March.
    6. Mitchell-Jackson, J. & Koomey, J.G. & Nordman, B. & Blazek, M., 2003. "Data center power requirements: measurements from Silicon Valley," Energy, Elsevier, vol. 28(8), pages 837-850.
    7. Pokrovskii, Vladimir N., 2007. "Productive energy in the US economy," Energy, Elsevier, vol. 32(5), pages 816-822.
    8. Xiaowei Ma & Mei Wang & Chuandong Li, 2019. "A Summary on Research of Household Energy Consumption: A Bibliometric Analysis," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    9. Varman, M. & Mahlia, T.M.I. & Masjuki, H.H., 2006. "Method for calculating annual energy efficiency improvement of TV sets," Energy Policy, Elsevier, vol. 34(15), pages 2429-2432, October.
    10. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M., 2012. "Power quality and energy efficiency assessment and the need for labelling and minimum performance standard of uninterruptible power systems (UPS) in Brazil," Energy Policy, Elsevier, vol. 41(C), pages 885-892.
    11. Kamilaris, Andreas & Kalluri, Balaji & Kondepudi, Sekhar & Kwok Wai, Tham, 2014. "A literature survey on measuring energy usage for miscellaneous electric loads in offices and commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 536-550.
    12. Wei, Shuangyu & Tien, Paige Wenbin & Calautit, John Kaiser & Wu, Yupeng & Boukhanouf, Rabah, 2020. "Vision-based detection and prediction of equipment heat gains in commercial office buildings using a deep learning method," Applied Energy, Elsevier, vol. 277(C).
    13. Ayres, Robert U. & Ayres, Leslie W. & Pokrovsky, Vladimir, 2005. "On the efficiency of US electricity usage since 1900," Energy, Elsevier, vol. 30(7), pages 1092-1145.
    14. Hyemi Kim & Kyung-soon Park & Hwan-yong Kim & Young-hak Song, 2018. "Study on Variation of Internal Heat Gain in Office Buildings by Chronology," Energies, MDPI, vol. 11(4), pages 1-16, April.
    15. Webber, Carrie A. & Roberson, Judy A. & McWhinney, Marla C. & Brown, Richard E. & Pinckard, Margaret J. & Busch, John F., 2006. "After-hours power status of office equipment in the USA," Energy, Elsevier, vol. 31(14), pages 2823-2838.
    16. Koomey, Jonathan G & Martin, Nathan C & Brown, Marilyn & Price, Lynn K & Levine, Mark D, 1998. "Costs of reducing carbon emissions: US building sector scenarios," Energy Policy, Elsevier, vol. 26(5), pages 433-440, April.
    17. Bodil M. Larsen & Runa Nesbakken, 2003. "How to quantify household electricity end-use consumption," Discussion Papers 346, Statistics Norway, Research Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:7:p:1177-1184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.