IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021978.html
   My bibliography  Save this article

Estimation of battery state of health and open circuit voltage at various depths of discharge based on deep learning and relaxation voltage

Author

Listed:
  • Liu, Yunong
  • Liu, Yuefeng
  • Bao, Xiang
  • Shen, Hongyu

Abstract

Data during the relaxation phase of batteries is readily obtainable, requiring no complex feature engineering, and is closely related to battery aging and OCV, which makes it a recent research hotspot. However, most existing methods primarily utilize relaxation voltage to estimate the SOH of batteries only after they have been fully charged, thereby limiting their application scenarios. Unlike methods that focus solely on relaxation voltage at high SOC, this study explores the influence of different depths of discharge on voltage response. First, relaxation voltages at various discharge SOCs are extracted to derive the voltage differences and their corresponding statistical characteristics. Subsequently, a multi-gate expert model that combines CNN and BiLSTM is established to achieve a joint estimation of battery SOH and OCV. Experimental results from a degradation dataset of 12 cells with 3 Ah capacity indicate that introducing the OCV estimation task enhances the accuracy of SOH estimation, with MAE for SOH and OCV reaching 1.51 % and 0.25 %, respectively. Finally, by fine-tuning a pre-trained model and utilizing only a small amount of target domain battery data, transfer learning for SOH and OCV is accomplished, yielding MAE values of 1.59 % and 0.46 %, respectively, which validates the model's strong generalization capability.

Suggested Citation

  • Liu, Yunong & Liu, Yuefeng & Bao, Xiang & Shen, Hongyu, 2025. "Estimation of battery state of health and open circuit voltage at various depths of discharge based on deep learning and relaxation voltage," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021978
    DOI: 10.1016/j.energy.2025.136555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021978
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Bo & Zhu, Yuli & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range," Energy, Elsevier, vol. 263(PC).
    2. Yang, Bo & Qian, Yucun & Li, Qiang & Chen, Qian & Wu, Jiyang & Luo, Enbo & Xie, Rui & Zheng, Ruyi & Yan, Yunfeng & Su, Shi & Wang, Jingbo, 2024. "Critical summary and perspectives on state-of-health of lithium-ion battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    4. Chen, Junxiong & Hu, Yuanjiang & Zhu, Qiao & Rashid, Haroon & Li, Hongkun, 2023. "A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging," Energy, Elsevier, vol. 282(C).
    5. Qiaohua Fang & Xuezhe Wei & Tianyi Lu & Haifeng Dai & Jiangong Zhu, 2019. "A State of Health Estimation Method for Lithium-Ion Batteries Based on Voltage Relaxation Model," Energies, MDPI, vol. 12(7), pages 1-18, April.
    6. Lin, Chuanping & Xu, Jun & Shi, Mingjie & Mei, Xuesong, 2022. "Constant current charging time based fast state-of-health estimation for lithium-ion batteries," Energy, Elsevier, vol. 247(C).
    7. Khaleghi, Sahar & Hosen, Md Sazzad & Van Mierlo, Joeri & Berecibar, Maitane, 2024. "Towards machine-learning driven prognostics and health management of Li-ion batteries. A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Li, Weihan & Cao, Decheng & Jöst, Dominik & Ringbeck, Florian & Kuipers, Matthias & Frie, Fabian & Sauer, Dirk Uwe, 2020. "Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries," Applied Energy, Elsevier, vol. 269(C).
    10. Fan, Guodong & Zhang, Xi, 2023. "Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network," Applied Energy, Elsevier, vol. 330(PA).
    11. Son, Seho & Jeong, Siheon & Kwak, Eunji & Kim, Jun-hyeong & Oh, Ki-Yong, 2022. "Integrated framework for SOH estimation of lithium-ion batteries using multiphysics features," Energy, Elsevier, vol. 238(PA).
    12. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    13. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    14. Shuxiang Song & Chen Fei & Haiying Xia, 2020. "Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction," Energies, MDPI, vol. 13(4), pages 1-13, February.
    15. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Gao, Yizhao & Zhu, Chong & Zhang, Xi & Guo, Bangjun, 2021. "Implementation and evaluation of a practical electrochemical- thermal model of lithium-ion batteries for EV battery management system," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    2. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    3. Ko, Chi-Jyun & Chen, Kuo-Ching & Chen, Chih-Hung, 2025. "Advantageous characteristics of constant voltage charging: A good option to estimate battery states for lithium-ion batteries," Energy, Elsevier, vol. 322(C).
    4. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Constructing battery impedance spectroscopy using partial current in constant-voltage charging or partial relaxation voltage," Applied Energy, Elsevier, vol. 356(C).
    5. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    6. Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
    7. Chen, Si-Zhe & Liang, Zikang & Yuan, Haoliang & Yang, Ling & Xu, Fangyuan & Fan, Yuanliang, 2023. "A novel state of health estimation method for lithium-ion batteries based on constant-voltage charging partial data and convolutional neural network," Energy, Elsevier, vol. 283(C).
    8. Dou, Bowen & Hou, Shujuan & Li, Hai & Zhao, Yanpeng & Fan, Yue & Sun, Lei & Chen, Hao-sen, 2025. "Cross-domain state of health estimation for lithium-ion battery based on latent space consistency using few-unlabeled data," Energy, Elsevier, vol. 320(C).
    9. Zhou, Yifei & Wang, Shunli & Feng, Renjun & Xie, Yanxin & Fernandez, Carlos, 2024. "Multi-temperature capable enhanced bidirectional long short term memory-multilayer perceptron hybrid model for lithium-ion battery SOC estimation," Energy, Elsevier, vol. 312(C).
    10. Zhao, Xiaoyu & Wang, Zuolu & Miao, Haiyan & Yang, Wenxian & Gu, Fengshou & Ball, Andrew D., 2024. "A label-free battery state of health estimation method based on adversarial multi-domain adaptation network and relaxation voltage," Energy, Elsevier, vol. 308(C).
    11. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2024. "An adaptive and interpretable SOH estimation method for lithium-ion batteries based-on relaxation voltage cross-scale features and multi-LSTM-RFR2," Energy, Elsevier, vol. 304(C).
    12. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    13. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    14. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    15. Zhao, Jingyuan & Wang, Zhenghong & Wu, Yuyan & Burke, Andrew F., 2025. "Predictive pretrained transformer (PPT) for real-time battery health diagnostics," Applied Energy, Elsevier, vol. 377(PD).
    16. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    17. Li, Qingbo & Lu, Taolin & Lai, Chunyan & Li, Jiwei & Pan, Long & Ma, Changjun & Zhu, Yunpeng & Xie, Jingying, 2024. "Lithium-ion battery capacity estimation based on fragment charging data using deep residual shrinkage networks and uncertainty evaluation," Energy, Elsevier, vol. 290(C).
    18. Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
    19. Han, Xuewei & Yuan, Huimei & Wu, Lifeng, 2025. "Kalman filter anomaly values processing meta-model ensemble learning framework for Lithium-ion battery capacity prediction," Energy, Elsevier, vol. 322(C).
    20. Mei, Peng & Karimi, Hamid Reza & Xie, Jiale & Chen, Fei & Ou, Lei & Yang, Shichun & Huang, Cong, 2024. "Battery state estimation methods and management system under vehicle–cloud collaboration: A Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.