IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics036054422501850x.html
   My bibliography  Save this article

Towards positive energy district assessment: The case study of Bucharest

Author

Listed:
  • Sessa, Emilio
  • Brunetti, Alberto
  • Ciulla, Giuseppina
  • Guarino, Francesco
  • Longo, Sonia
  • Cellura, Maurizio
  • Dragomir, Ana
  • Papina, Codrut

Abstract

Achieving energy-positive urban transformation requires integrated methodologies that assess feasibility at of an urban area as a Positive Energy District. This study applies a GIS-UBEM replicable approach to evaluate energy retrofitting, renewable energy potential, and urban morphology constraints of Drumul Taberei in Bucharest District 6, covering 447 buildings, with residential destination use (443) and schools (4). The findings indicate that deep renovations reduce heating demand by 24 %, but electricity demand remains largely unchanged due to roof area limitations (12 % of total conditioned space) keeping the traditional natural gas-based system. Despite a potential PV output of 48.34 GWh, the district remains largely reliant on external electricity sources, highlighting the challenges of achieving energy self-sufficiency in high-density urban areas, even when investigating smaller area to individuate possible sub-PEDs.

Suggested Citation

  • Sessa, Emilio & Brunetti, Alberto & Ciulla, Giuseppina & Guarino, Francesco & Longo, Sonia & Cellura, Maurizio & Dragomir, Ana & Papina, Codrut, 2025. "Towards positive energy district assessment: The case study of Bucharest," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s036054422501850x
    DOI: 10.1016/j.energy.2025.136208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422501850X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    2. Liu, Suijie & Cao, Sunliang, 2025. "Development of integrated energy sharing systems between neighboring zero-energy buildings via micro-grid and local electric vehicles with energy trading business models," Applied Energy, Elsevier, vol. 380(C).
    3. Dragomir, George & Șerban, Alexandru & Năstase, Gabriel & Brezeanu, Alin Ionuț, 2016. "Wind energy in Romania: A review from 2009 to 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 129-143.
    4. Masip, X. & Fuster-Palop, Enrique & Prades-Gil, C. & Viana-Fons, Joan D. & Payá, Jorge & Navarro-Peris, Emilio, 2023. "Case study of electric and DHW energy communities in a Mediterranean district," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    5. De Mel, Ishanki & Bierkens, Floris & Liu, Xinyao & Leach, Matthew & Chitnis, Mona & Liu, Lirong & Short, Michael, 2023. "A decision-support framework for residential heating decarbonisation policymaking," Energy, Elsevier, vol. 268(C).
    6. Kök, Ali & Billerbeck, Anna & Manz, Pia & Kranzl, Lukas, 2025. "Achieving climate neutrality in district heating: The impact of system temperature levels on the supply mix of EU-27 in 2050," Energy, Elsevier, vol. 315(C).
    7. García-Gusano, Diego & Iribarren, Diego & Muñoz, Iñigo & Arrizabalaga, Eneko & Mabe, Lara & Martín-Gamboa, Mario, 2025. "The future need for critical raw materials associated with long-term energy and climate strategies: The illustrative case study of power generation in Spain," Energy, Elsevier, vol. 314(C).
    8. Vallati, Andrea & Lo Basso, Gianluigi & Muzi, Francesco & Fiorini, Costanza Vittoria & Pastore, Lorenzo Mario & Di Matteo, Miriam, 2024. "Urban energy transition: Sustainable model simulation for social house district," Energy, Elsevier, vol. 308(C).
    9. Atiba, Ezekiel & Chwieduk, Dorota, 2024. "Design of a positive energy district: A Nigerian case study," Renewable Energy, Elsevier, vol. 237(PB).
    10. Bruck, Axel & Díaz Ruano, Santiago & Auer, Hans, 2022. "One piece of the puzzle towards 100 Positive Energy Districts (PEDs) across Europe by 2025: An open-source approach to unveil favourable locations of PV-based PEDs from a techno-economic perspective," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marion, Michaël & Louahlia, Hasna & Gualous, Hamid, 2016. "Performances of a CHP Stirling system fuelled with glycerol," Renewable Energy, Elsevier, vol. 86(C), pages 182-191.
    2. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    3. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    4. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    5. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 153(C), pages 170-184.
    6. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Exergy cost allocation method based on energy level (ECAEL) for a CCHP system," Energy, Elsevier, vol. 134(C), pages 240-247.
    7. Năstase, Gabriel & Şerban, Alexandru & Năstase, Alina Florentina & Dragomir, George & Brezeanu, Alin Ionuţ & Iordan, Nicolae Fani, 2017. "Hydropower development in Romania. A review from its beginnings to the present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 297-312.
    8. Bahlouli, Keyvan & Khoshbakhti Saray, Rahim, 2016. "Energetic and exergetic analyses of a new energy system for heating and power production purposes," Energy, Elsevier, vol. 106(C), pages 390-399.
    9. Jie, Pengfei & Jin, Xinwei & Zhang, Zhijie & Fu, Yu & Wei, Fengjun, 2025. "Impact of incentive policies on the optimal configuration and performance of biomass gas-driven combined cooling, heating and power system," Energy, Elsevier, vol. 327(C).
    10. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    11. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    12. Manuel Raul Pelaez-Samaniego & Juan L. Espinoza & José Jara-Alvear & Pablo Arias-Reyes & Fernando Maldonado-Arias & Patricia Recalde-Galindo & Pablo Rosero & Tsai Garcia-Perez, 2020. "Potential and Impacts of Cogeneration in Tropical Climate Countries: Ecuador as a Case Study," Energies, MDPI, vol. 13(20), pages 1-26, October.
    13. Deng, Yan & Liu, Yicai & Zeng, Rong & Wang, Qianxu & Li, Zheng & Zhang, Yu & Liang, Heng, 2021. "A novel operation strategy based on black hole algorithm to optimize combined cooling, heating, and power-ground source heat pump system," Energy, Elsevier, vol. 229(C).
    14. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    15. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    16. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    17. Ghanbari, Ali & Karimi, Hamid & Jadid, Shahram, 2020. "Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks," Energy, Elsevier, vol. 204(C).
    18. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
    19. Fan, Gang & Lu, Xiaochen & Chen, Kang & Zhang, Yicen & Han, Zihao & Yu, Haibin & Dai, Yiping, 2022. "Comparative analysis on design and off-design performance of novel cascade CO2 combined cycles for gas turbine waste heat utilization," Energy, Elsevier, vol. 254(PA).
    20. Parantapa Sawant & Oscar Villegas Mier & Michael Schmidt & Jens Pfafferott, 2021. "Demonstration of Optimal Scheduling for a Building Heat Pump System Using Economic-MPC," Energies, MDPI, vol. 14(23), pages 1-15, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s036054422501850x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.