Maximum wind energy extraction of floating offshore wind turbine using model predictive control with data-driven linear predictors
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.136097
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Lee, Bong-Hee & Ahn, Dong-Joon & Kim, Hyun-Goo & Ha, Young-Cheol, 2012. "An estimation of the extreme wind speed using the Korea wind map," Renewable Energy, Elsevier, vol. 42(C), pages 4-10.
- Fathabadi, Hassan, 2017. "Novel standalone hybrid solar/wind/fuel cell/battery power generation system," Energy, Elsevier, vol. 140(P1), pages 454-465.
- López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Pustina, L. & Biral, F. & Serafini, J., 2022. "A novel Economic Nonlinear Model Predictive Controller for power maximisation on wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Liu, Junbo & Cai, Chang & Song, Dongran & Zhong, Xiaohui & Shi, Kezhong & Chen, Yinpeng & Cheng, Shijie & Huang, Yupian & Jiang, Xue & Li, Qing'an, 2024. "Nonlinear model predictive control for maximum wind energy extraction of semi-submersible floating offshore wind turbine based on simplified dynamics model," Energy, Elsevier, vol. 311(C).
- Wakui, Tetsuya & Nagamura, Atsushi & Yokoyama, Ryohei, 2021. "Stabilization of power output and platform motion of a floating offshore wind turbine-generator system using model predictive control based on previewed disturbances," Renewable Energy, Elsevier, vol. 173(C), pages 105-127.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Junbo & Cai, Chang & Song, Dongran & Zhong, Xiaohui & Shi, Kezhong & Chen, Yinpeng & Cheng, Shijie & Huang, Yupian & Jiang, Xue & Li, Qing'an, 2024. "Nonlinear model predictive control for maximum wind energy extraction of semi-submersible floating offshore wind turbine based on simplified dynamics model," Energy, Elsevier, vol. 311(C).
- Li, Tenghui & Yang, Jin & Ioannou, Anastasia, 2024. "Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning," Renewable Energy, Elsevier, vol. 234(C).
- Grant, Elenya & Johnson, Kathryn & Damiani, Rick & Phadnis, Mandar & Pao, Lucy, 2023. "Buoyancy can ballast control for increased power generation of a floating offshore wind turbine with a light-weight semi-submersible platform," Applied Energy, Elsevier, vol. 330(PB).
- Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Fathabadi, Hassan, 2019. "Recovering waste vibration energy of an automobile using shock absorbers included magnet moving-coil mechanism and adding to overall efficiency using wind turbine," Energy, Elsevier, vol. 189(C).
- Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
- Dong, Zhe & Li, Junyi & Zhang, Jiasen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2024. "Nonlinear finite-set control of clean energy systems with nuclear power application," Energy, Elsevier, vol. 313(C).
- Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
- Kang, Dongbum & Ko, Kyungnam & Huh, Jongchul, 2015. "Determination of extreme wind values using the Gumbel distribution," Energy, Elsevier, vol. 86(C), pages 51-58.
- Palanimuthu, Kumarasamy & Joo, Young Hoon, 2023. "Reliability improvement of the large-scale wind turbines with actuator faults using a robust fault-tolerant synergetic pitch control," Renewable Energy, Elsevier, vol. 217(C).
- Fathabadi, Hassan, 2019. "Two novel methods for converting the waste heat of PV modules caused by temperature rise into electric power," Renewable Energy, Elsevier, vol. 142(C), pages 543-551.
- Wang, Lu & Bergua, Roger & Robertson, Amy & Wright, Alan & Zalkind, Daniel & Fowler, Matthew & Lenfest, Eben & Viselli, Anthony & Goupee, Andrew & Kimball, Richard, 2024. "Experimental investigation of advanced turbine control strategies and load-mitigation measures with a model-scale floating offshore wind turbine system," Applied Energy, Elsevier, vol. 355(C).
- Sun, Wan & Wang, Yiheng & Liu, Yang & Su, Bo & Guo, Tong & Cheng, Guanggui & Zhang, Zhongqiang & Ding, Jianning & Seok, Jongwon, 2024. "Navigating the future of flow-induced vibration-based piezoelectric energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
- Pustina, L. & Serafini, J. & Pasquali, C. & Solero, L. & Lidozzi, A. & Gennaretti, M., 2023. "A novel resonant controller for sea-induced rotor blade vibratory loads reduction on floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Assaf, Jihane & Shabani, Bahman, 2018. "Experimental study of a novel hybrid solar-thermal/PV-hydrogen system: Towards 100% renewable heat and power supply to standalone applications," Energy, Elsevier, vol. 157(C), pages 862-876.
- Chen, Zheng & Sun, Jili & Yang, Jingqing & Sun, Yong & Chen, Qian & Zhao, Hongyang & Qian, Peng & Si, Yulin & Zhang, Dahai, 2024. "Experimental and numerical analysis of power take-off control effects on the dynamic performance of a floating wind-wave combined system," Renewable Energy, Elsevier, vol. 226(C).
- Aktaş, Ahmet & Kırçiçek, Yağmur, 2020. "A novel optimal energy management strategy for offshore wind/marine current/battery/ultracapacitor hybrid renewable energy system," Energy, Elsevier, vol. 199(C).
- Christopher Jung & Dirk Schindler & Alexander Buchholz & Jessica Laible, 2017. "Global Gust Climate Evaluation and Its Influence on Wind Turbines," Energies, MDPI, vol. 10(10), pages 1-18, September.
- Liu, Qingsong & Bashir, Musa & Huang, Haoda & Miao, Weipao & Xu, Zifei & Yue, Minnan & Li, Chun, 2025. "Nature-inspired innovative platform designs for optimized performance of Floating vertical Axis wind turbines," Applied Energy, Elsevier, vol. 380(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017396. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.