IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225016974.html
   My bibliography  Save this article

Experimental and numerical analysis of the thermodynamic characteristics of a hydrocarbon flame with an improved second-law thermodynamic model

Author

Listed:
  • Zhang, Zhongnong
  • Lou, Chun
  • Li, Zhicong
  • Kalaycı, Nimeti
  • Cai, Benan
  • Zhou, Ying
  • Cai, Weihua

Abstract

This paper presents an improved analysis model for the combustion process, based on the second law of thermodynamics, that includes an exergy balance equation that reflects the influence of thermal radiation in the flame. In the experimental analysis, the model is combined with the infrared spectrum measurement technique, and the exergy efficiency of the flame is determined using the measured radiative intensities. In the numerical analysis, we calculate the entropy generation rates (EGRs) associated with the irreversibilities of various processes, including thermal radiation, heat conduction, mass diffusion and chemical reactions. The second law of thermodynamics is used for the first time to analyse the chemical mechanism and the combustion characteristics of the flame, and the relationship between the flame structure and energy conversion in the flame is established. Both the experimental and numerical results indicate that the exergy efficiency first decreases and then increases as the equivalence ratio is reduced. The results of an entropy analysis indicate that CH2O and HCO are two important substances in the generation process of CO2. An exergy analysis shows that the energy conversion processes in the different zones have different characteristics and that the strongest energy conversion takes place near the inner combustion surface.

Suggested Citation

  • Zhang, Zhongnong & Lou, Chun & Li, Zhicong & Kalaycı, Nimeti & Cai, Benan & Zhou, Ying & Cai, Weihua, 2025. "Experimental and numerical analysis of the thermodynamic characteristics of a hydrocarbon flame with an improved second-law thermodynamic model," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225016974
    DOI: 10.1016/j.energy.2025.136055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Makhanlall, Deodat & Munda, Josiah L. & Jiang, Peixue, 2013. "Radiation energy devaluation in diffusion combusting flows of natural gas," Energy, Elsevier, vol. 61(C), pages 657-663.
    2. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    3. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).
    4. Sayadzadeh, Mohammad Esmaiel & Samani, Majid Riahi & Toghraie, Davood & Emami, Sobhan & Eftekhari, Seyed Ali, 2023. "Numerical study on pollutant emissions characteristics and chemical and physical exergy analysis in Mild combustion," Energy, Elsevier, vol. 278(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Qingguo & E, Jiaqiang & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Meng, Tian & Qiu, Runzhi, 2018. "Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air," Energy, Elsevier, vol. 160(C), pages 349-360.
    2. Zhang, Yingnan & Wu, Guanqi & Zhang, Bin, 2025. "Costs and CO2 emissions of technological transformation in China's power industry: The impact of market regulation and assistive technologies," Structural Change and Economic Dynamics, Elsevier, vol. 73(C), pages 211-222.
    3. Sierra-Pallares, José & García del Valle, Javier & Paniagua, Jorge Muñoz & García, Javier & Méndez-Bueno, César & Castro, Francisco, 2018. "Shape optimization of a long-tapered R134a ejector mixing chamber," Energy, Elsevier, vol. 165(PA), pages 422-438.
    4. Ji, Jie & Gong, Changzhi & Wan, Huaxian & Gao, Zihe & Ding, Long, 2019. "Prediction of thermal radiation received by vertical targets based on two-dimensional flame shape from rectangular n-heptane pool fires with different aspect ratios," Energy, Elsevier, vol. 185(C), pages 644-652.
    5. Chater, Hamza & Bakhattar, Ilias & Asbik, Mohamed & Koukouch, Abdelghani & Mouaky, Ammar & Ouachakradi, Zakariae, 2024. "Hybrid solar hydrothermal carbonization by integrating photovoltaic and parabolic trough technologies: Energy and exergy analyses, innovative designs, and mathematical Modelling," Energy, Elsevier, vol. 305(C).
    6. Otero R, Gustavo J. & Smit, Stephan H.H.J. & Pecnik, Rene, 2021. "Three-dimensional unsteady stator-rotor interactions in high-expansion organic Rankine cycle turbines," Energy, Elsevier, vol. 217(C).
    7. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    8. Tian, Zhen & Zhou, Yihang & Zhang, Yuan & Gao, Wenzhong, 2024. "Design principle, 4E analyses and optimization for onboard CCS system under EEDI framework: A case study of an LNG-fueled bulk carrier," Energy, Elsevier, vol. 295(C).
    9. Li, Bo & Wan, Huaxian & Gao, Zihe & Ji, Jie, 2019. "Experimental study on the characteristics of flame merging and tilt angle from twin propane burners under cross wind," Energy, Elsevier, vol. 174(C), pages 1200-1209.
    10. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Jaramillo, O.A. & Ramírez-Minguela, J.J. & Castro, J. Carlos & Damian-Ascencio, Cesar E. & Cano-Andrade, Sergio, 2020. "A numerical analysis of the energy and entropy generation rate in a Linear Fresnel Reflector using computational fluid dynamics," Renewable Energy, Elsevier, vol. 146(C), pages 1083-1100.
    11. Liu, Yaming & Chen, Sheng & Liu, Shi & Feng, Yongxin & Xu, Kai & Zheng, Chuguang, 2016. "Methane combustion in various regimes: First and second thermodynamic-law comparison between air-firing and oxyfuel condition," Energy, Elsevier, vol. 115(P1), pages 26-37.
    12. Guangchen Wang & Lanqi Ju, 2025. "Quantitative Evaluation of China’s Carbon Peaking Policies Based on PMC Index Model: Evidence from the First Batch of National Carbon Peak Pilot Provinces and Regions," Sustainability, MDPI, vol. 17(4), pages 1-33, February.
    13. Safari, Mehdi & Sheikhi, M. Reza H., 2014. "Large eddy simulation-based analysis of entropy generation in a turbulent nonpremixed flame," Energy, Elsevier, vol. 78(C), pages 451-457.
    14. Bracamonte, Johane, 2017. "Effect of the transient energy input on thermodynamic performance of passive water-in-glass evacuated tube solar water heaters," Renewable Energy, Elsevier, vol. 105(C), pages 689-701.
    15. Wei, Jianan & Liu, Haifeng & Zhu, Hongyan & Cai, Yuqing & Wang, Hu & Yao, Mingfa, 2023. "Energy analysis and optimization of iso-octane and n-heptane combustion process," Energy, Elsevier, vol. 262(PB).
    16. Chater, Hamza & Asbik, Mohamed & Mouaky, Ammar & Koukouch, Abdelghani & Belandria, Veronica & Sarh, Brahim, 2023. "Experimental and CFD investigation of a helical coil heat exchanger coupled with a parabolic trough solar collector for heating a batch reactor: An exergy approach," Renewable Energy, Elsevier, vol. 202(C), pages 1507-1519.
    17. Senda Agrebi & Louis Dreßler & Hendrik Nicolai & Florian Ries & Kaushal Nishad & Amsini Sadiki, 2021. "Analysis of Local Exergy Losses in Combustion Systems Using a Hybrid Filtered Eulerian Stochastic Field Coupled with Detailed Chemistry Tabulation: Cases of Flames D and E," Energies, MDPI, vol. 14(19), pages 1-21, October.
    18. Li, Haowen & Yang, Huachao & Yan, Jianhua & Cen, Kefa & Ostrikov, Kostya (Ken) & Bo, Zheng, 2022. "Energy and entropy generation analysis in a supercapacitor for different operating conditions," Energy, Elsevier, vol. 260(C).
    19. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    20. Hao Li & Yun Tong, 2025. "Developing a quantitative analytical framework for carbon neutrality in tourism-dependent regions," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-22, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225016974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.