IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225014446.html
   My bibliography  Save this article

Research on collaborative control strategy of cold storage and IT workload migration in data center

Author

Listed:
  • Zhu, Yiqun
  • Zhang, Quan
  • Huang, Gongsheng
  • Wang, Jiaqiang
  • Zou, Sikai
  • Ee, Yit Jing
  • Sopian, Kamaruzzaman

Abstract

The rare data communication between IT workload migration and cooling system impedes the optimization and improvement of overall energy efficiency in data center. Therefore, an advanced model predictive control strategy of IT workload migration collaborative cold storage tank and cooling system operation (MPC-WMCS) is developed, which adjusts operating modes and parameters through IT workload migration and cold storage technology to achieve maximum energy efficiency of the cooling system. Firstly, the load migration duration and the proportion of migrated IT workload are determined. And then the load migration process and equipment operating parameters are analyzed. Finally, the influence of annual temperature difference distribution on PUE is explored. Furthermore, to validate the effectiveness of the MPC-WMCS strategy, the Baseline and MPC-CS strategies are set up for comparative analysis. The results indicate that for short-term (S-type), medium-term (M-type), and long-term (L-type) migration of IT workload, 3 h, 5 h, and 7 h respectively are the most suitable. IT workload migration plays a greater role than cold charge/discharge regulation resulting in an 11.1 % increase in the system's COP. The degree of PUE reduction is determined by the outdoor wet-bulb temperature difference between day and night and the number of days the chiller operates. The MPC-WMCS strategy further reduces PUE, and it reduces energy consumption by about 7 % over the entire year compared to the MPC-CS strategy.

Suggested Citation

  • Zhu, Yiqun & Zhang, Quan & Huang, Gongsheng & Wang, Jiaqiang & Zou, Sikai & Ee, Yit Jing & Sopian, Kamaruzzaman, 2025. "Research on collaborative control strategy of cold storage and IT workload migration in data center," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014446
    DOI: 10.1016/j.energy.2025.135802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Yiqun & Zhang, Quan & Zeng, Liping & Wang, Jiaqiang & Zou, Sikai, 2024. "An advanced control strategy of hybrid cooling system with cold water storage system in data center," Energy, Elsevier, vol. 291(C).
    2. Cao, Yujie & Cheng, Ming & Zhang, Sufang & Mao, Hongju & Wang, Peng & Li, Chao & Feng, Yihui & Ding, Zhaohao, 2022. "Data-driven flexibility assessment for internet data center towards periodic batch workloads," Applied Energy, Elsevier, vol. 324(C).
    3. Wang, Jiangjiang & Deng, Hongda & Liu, Yi & Guo, Zeqing & Wang, Yongzhen, 2023. "Coordinated optimal scheduling of integrated energy system for data center based on computing load shifting," Energy, Elsevier, vol. 267(C).
    4. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    5. Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
    6. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    7. Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
    8. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Down, Douglas G. & Puri, Ishwar K., 2021. "Energy, exergy and computing efficiency based data center workload and cooling management," Applied Energy, Elsevier, vol. 299(C).
    9. Zhang, Yingbo & Shan, Kui & Li, Xiuming & Li, Hangxin & Wang, Shengwei, 2023. "Research and Technologies for next-generation high-temperature data centers – State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    10. Kwon, Soongeol, 2020. "Ensuring renewable energy utilization with quality of service guarantee for energy-efficient data center operations," Applied Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Ouzhu & Ding, Tao & Yang, Miao & Jia, Wenhao & He, Xinran & Ma, Zhoujun, 2024. "A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization," Applied Energy, Elsevier, vol. 358(C).
    2. Fan, Junqiu & Yan, Rujing & He, Yu & Zhang, Jing & Zhao, Weixing & Liu, Mingshun & An, Su & Ma, Qingfeng, 2025. "Stochastic optimization of combined energy and computation task scheduling strategies of hybrid system with multi-energy storage system and data center," Renewable Energy, Elsevier, vol. 242(C).
    3. Guo, Haijin & Yu, Hang & Wang, Meng & Liu, Cheng & Li, Chaoen, 2025. "Integrated management of workloads and energy system for data centers," Energy, Elsevier, vol. 327(C).
    4. Liu, Wenyu & Yan, Yuejun & Sun, Yimeng & Mao, Hongju & Cheng, Ming & Wang, Peng & Ding, Zhaohao, 2023. "Online job scheduling scheme for low-carbon data center operation: An information and energy nexus perspective," Applied Energy, Elsevier, vol. 338(C).
    5. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    6. Weijian Ding & Behzad Ebrahimi & Byoung-Do Kim & Connie L. Devenport & Amy E. Childress, 2024. "Analysis of Anthropogenic Waste Heat Emission from an Academic Data Center," Energies, MDPI, vol. 17(8), pages 1-20, April.
    7. Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
    8. Du, Yahui & Zhou, Zhihua & Yang, Xiaochen & Yang, Xueqing & Wang, Cheng & Liu, Junwei & Yuan, Jianjuan, 2023. "Dynamic thermal environment management technologies for data center: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Hu, Zhi-Hua & Zheng, Yu-Xin & Wang, You-Gan, 2022. "Packing computing servers into the vessel of an underwater data center considering cooling efficiency," Applied Energy, Elsevier, vol. 314(C).
    10. Wang, Fengjuan & Lv, Chengwei & Xu, Jiuping, 2023. "Carbon awareness oriented data center location and configuration: An integrated optimization method," Energy, Elsevier, vol. 278(C).
    11. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    12. Zhou, Yongcheng & Wei, Fanchao & Li, Shuangxiu & Wang, Zhonghao & Liu, Jinfu & Yu, Daren, 2025. "Data center load modeling through optimal energy consumption characteristics: A path to simultaneously enhance energy efficiency and demand response quality," Applied Energy, Elsevier, vol. 393(C).
    13. Yang, Ting & Zhao, Yingjie & Pen, Haibo & Wang, Zhaoxia, 2018. "Data center holistic demand response algorithm to smooth microgrid tie-line power fluctuation," Applied Energy, Elsevier, vol. 231(C), pages 277-287.
    14. Xue, Lin & Wang, Jianxue & Li, Haotian & Yong, Weizhen & Zhang, Yao, 2025. "Online energy conservation scheduling for geo-distributed data centers with hybrid data-driven and knowledge-driven approach," Energy, Elsevier, vol. 322(C).
    15. Su, Chengguo & Wang, Lingshuang & Sui, Quan & Wu, Huijun, 2025. "Optimal scheduling of a cascade hydro-thermal-wind power system integrating data centers and considering the spatiotemporal asynchronous transfer of energy resources," Applied Energy, Elsevier, vol. 377(PA).
    16. Qu, Shengli & Duan, Kaiwen & Guo, Yuxiang & Feng, Yiwei & Wang, Chuang & Xing, Ziwen, 2024. "Real-time optimization of the liquid-cooled data center based on cold plates under different ambient temperatures and thermal loads," Applied Energy, Elsevier, vol. 363(C).
    17. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan, 2024. "A new shared energy storage business model for data center clusters considering energy storage degradation," Renewable Energy, Elsevier, vol. 225(C).
    18. Li, Jian & Jurasz, Jakub & Li, Hailong & Tao, Wen-Quan & Duan, Yuanyuan & Yan, Jinyue, 2020. "A new indicator for a fair comparison on the energy performance of data centers," Applied Energy, Elsevier, vol. 276(C).
    19. Xiao, Jiang-Wen & Yang, Yan-Bing & Cui, Shichang & Wang, Yan-Wu, 2023. "Cooperative online schedule of interconnected data center microgrids with shared energy storage," Energy, Elsevier, vol. 285(C).
    20. Zhang, Yuanshi & Zou, Bokang & Jin, Xu & Luo, Yifu & Song, Meng & Ye, Yujian & Hu, Qinran & Chen, Qirui & Zambroni, Antonio Carlos, 2025. "Mitigating power grid impact from proactive data center workload shifts: A coordinated scheduling strategy integrating synergistic traffic - data - power networks," Applied Energy, Elsevier, vol. 377(PD).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.