IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225014197.html
   My bibliography  Save this article

Study on the factors influencing CO2 hydrate sequestration in CH4 hydrate-bearing reservoirs

Author

Listed:
  • Lou, Benkui
  • Li, Shuxia
  • Sun, Hao
  • Liu, Lu
  • Guo, Yang

Abstract

CO2 sequestration as hydrates beneath the seafloor is a promising strategy to mitigate carbon emissions. However, in marine environments overlapping hydrate stability zones (HSZs) for CO2 and CH4 complicate the process since pre-existing CH4 hydrates can affect outcomes. This study employs the CMG-STARS simulator to compare CO2 sequestration at various stratigraphic positions by evaluating the impacts of geological parameters (porosity, permeability, formation compressibility) and injection parameters (temperature, rate, maximum bottom-hole pressure) on cumulative injection volume and hydrate conversion ratio. Results indicate that sequestering CO2 beneath CH4 reservoirs yields higher sequestration capacity, while injection above CH4 hydrates provides a greater hydrate conversion ratio. For sequestration above CH4 hydrate layers, injection temperature and permeability strongly influence cumulative CO2 injection volume; higher temperatures delay hydrate formation to allow more CO2 flow (correlation: 0.86), and higher permeability enhances fluid migration (correlation: 0.36). Similarly, lower injection temperatures and porosity favor higher hydrate conversion ratios. Lower temperatures promote hydrate formation (correlation: −0.75), while lower porosity improves heat exchange (correlation: −0.46). Formation compressibility, injection rate, and bottom-hole pressure have lesser impacts. These findings provide insights for optimizing CO2 sequestration strategies in CH4 hydrate-bearing reservoirs.

Suggested Citation

  • Lou, Benkui & Li, Shuxia & Sun, Hao & Liu, Lu & Guo, Yang, 2025. "Study on the factors influencing CO2 hydrate sequestration in CH4 hydrate-bearing reservoirs," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014197
    DOI: 10.1016/j.energy.2025.135777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014197
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    2. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    3. Zhang, Kai & Lau, Hon Chung, 2022. "Sequestering CO2 as CO2 hydrate in an offshore saline aquifer by reservoir pressure management," Energy, Elsevier, vol. 239(PC).
    4. Josep G. Canadell & E. Detlef Schulze, 2014. "Global potential of biospheric carbon management for climate mitigation," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    5. Cheng Lu & Yuxuan Xia & Xiaoxiao Sun & Hang Bian & Haijun Qiu & Hongfeng Lu & Wanjing Luo & Jianchao Cai, 2019. "Permeability Evolution at Various Pressure Gradients in Natural Gas Hydrate Reservoir at the Shenhu Area in the South China Sea," Energies, MDPI, vol. 12(19), pages 1-13, September.
    6. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    7. Gu, Yuhang & Liu, Xuejian & Li, Yan & Lu, Hongfeng & Xu, Chenlu & Ren, Jinfeng & Chen, Guangjin & Linga, Praveen & Zhao, Jianzhong & Yin, Zhenyuan, 2025. "Feasibility analysis of liquid CO2 injection and sequestration as hydrates in South China Sea marine sediments over 100 years," Applied Energy, Elsevier, vol. 380(C).
    8. Li, Shuxia & Wu, Didi & Wang, Xiaopu & Hao, Yongmao, 2021. "Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens," Energy, Elsevier, vol. 232(C).
    9. Yi Wang & Jing-Chun Feng & Xiao-Sen Li & Yu Zhang & Gang Li, 2016. "Evaluation of Gas Production from Marine Hydrate Deposits at the GMGS2-Site 8, Pearl River Mouth Basin, South China Sea," Energies, MDPI, vol. 9(3), pages 1-22, March.
    10. Guo, Yang & Li, Shuxia & Sun, Hao & Wu, Didi & Liu, Lu & Zhang, Ningtao & Qin, Xuwen & Lu, Cheng, 2024. "Enhancing gas production and CO2 sequestration from marine hydrate reservoirs through optimized CO2 hydrate cap," Energy, Elsevier, vol. 303(C).
    11. Ho, Leong Chuan & Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 63(C), pages 252-259.
    12. Mandadige Samintha Anne Perera & Ranjith Pathegama Gamage & Tharaka Dilanka Rathnaweera & Ashani Savinda Ranathunga & Andrew Koay & Xavier Choi, 2016. "A Review of CO 2 -Enhanced Oil Recovery with a Simulated Sensitivity Analysis," Energies, MDPI, vol. 9(7), pages 1-22, June.
    13. Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process," Energy, Elsevier, vol. 50(C), pages 364-373.
    14. Wu, Mingyu & Sun, Huiru & Liu, Qingbin & Lv, Xin & Chen, Bingbing & Yang, Mingjun & Song, Yongchen, 2025. "Enhancing CO2 sequestration safety with hydrate caps: A comparative study of CO2 injection modes and saturation effects," Energy, Elsevier, vol. 320(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    2. Hui, Chengyu & Zhang, Yiqun & Wu, Xiaoya & Zhang, Panpan & Li, Gensheng & Lu, Jingsheng & Zhang, Bo, 2024. "Numerical analysis of the production behaviors and geomechanical responses during natural gas hydrate production by vertical wells fracturing," Energy, Elsevier, vol. 292(C).
    3. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    4. Guo, Yang & Li, Shuxia & Sun, Hao & Wu, Didi & Liu, Lu & Zhang, Ningtao & Qin, Xuwen & Lu, Cheng, 2024. "Enhancing gas production and CO2 sequestration from marine hydrate reservoirs through optimized CO2 hydrate cap," Energy, Elsevier, vol. 303(C).
    5. Guo, Yang & Li, Shuxia & Qin, Xuwen & Lu, Cheng & Wu, Didi & Liu, Lu & Zhang, Ningtao, 2023. "Enhanced gas production from low-permeability hydrate reservoirs based on embedded discrete fracture models: Influence of branch parameters," Energy, Elsevier, vol. 282(C).
    6. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    7. Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
    8. Yi Wang & Lei Zhan & Jing-Chun Feng & Xiao-Sen Li, 2019. "Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation," Energies, MDPI, vol. 12(22), pages 1-15, November.
    9. Ye, Hongyu & Wu, Xuezhen & Guo, Gaoqiang & Huang, Qichao & Chen, Jingyu & Li, Dayong, 2023. "Application of the enlarged wellbore diameter to gas production enhancement from natural gas hydrates by complex structure well in the shenhu sea area," Energy, Elsevier, vol. 264(C).
    10. Jung-Tae Kim & Ah-Ram Kim & Gye-Chun Cho & Chul-Whan Kang & Joo Yong Lee, 2019. "The Effects of Coupling Stiffness and Slippage of Interface Between the Wellbore and Unconsolidated Sediment on the Stability Analysis of the Wellbore Under Gas Hydrate Production," Energies, MDPI, vol. 12(21), pages 1-23, November.
    11. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    12. Liu, Jun & Lan, Jiang-Chen & Wang, Bei-Fu & Liang, Yan-Yan & Liang, De-Qing, 2025. "Research on the gas storage properties of ice and water conversion into methane hydrates in silica gel with various pore sizes," Energy, Elsevier, vol. 320(C).
    13. Qin, Fanfan & Sun, Jiaxin & Cao, Xinxin & Mao, Peixiao & Zhang, Ling & Lei, Gang & Jiang, Guosheng & Ning, Fulong, 2025. "Numerical simulation on combined production of hydrate and free gas from silty clay reservoir in the South China Sea by depressurization: Formation sealing," Applied Energy, Elsevier, vol. 377(PA).
    14. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    15. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    16. Zhang, Xuemin & Liu, Qingqing & He, Jiajin & Yuan, Qing & Li, Jinping & Wu, Qingbai & Wang, Yingmei & Zhang, Peng, 2024. "Research progress of incremental synthesis and enhancement mechanism of natural gas hydrates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    17. Ning, Fulong & Chen, Qiang & Sun, Jiaxin & Wu, Xiang & Cui, Guodong & Mao, Peixiao & Li, Yanlong & Liu, Tianle & Jiang, Guosheng & Wu, Nengyou, 2022. "Enhanced gas production of silty clay hydrate reservoirs using multilateral wells and reservoir reformation techniques: Numerical simulations," Energy, Elsevier, vol. 254(PA).
    18. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    19. Bin Wang & Peng Huo & Tingting Luo & Zhen Fan & Fanglan Liu & Bo Xiao & Mingjun Yang & Jiafei Zhao & Yongchen Song, 2017. "Analysis of the Physical Properties of Hydrate Sediments Recovered from the Pearl River Mouth Basin in the South China Sea: Preliminary Investigation for Gas Hydrate Exploitation," Energies, MDPI, vol. 10(4), pages 1-16, April.
    20. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.