IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225013891.html
   My bibliography  Save this article

Multi-objective optimization for a combined heat and power unit with steam ejector at varied boundary: Energy, Economic and Environment (3E) analysis

Author

Listed:
  • Chen, Ranjing
  • Cao, Yue
  • He, Tianyu
  • Si, Fengqi

Abstract

Combined heat and power (CHP) represents a promising technology for achieving carbon neutrality. To enhance the energy, economic and environment (3E) performance of the ejectors integrated CHP unit, a data-corrected mechanism model was firstly developed. Subsequently, the limitations of different heating modes are analyzed at full production and under production. The maximum heat load of the condenser and availability of exhaust flow are primary concerns for exhaust heating. Extraction flow presents a high-grade heat source, yet it has an adverse effect on the system power output and results in a notable increase in fuel consumption. With a novel marginal heating efficiency, economic, efficiency and environment analysis was conducted, then a global sensitivity index analysis was performed in order to reveal the contribution of each parameter. The profitability of high back pressure heating, steam ejector and extraction heating is increasingly strong, but their impact on efficiency and environment must be considered. Finally, multi-objective optimization is conducted, and the correlations of each target are examined. Selected from the Pareto front, the marginal heating efficiency is 2.52, heating profit is 11424.9 $/h and the emission is 448.1 tCO2/h at full production conditions.

Suggested Citation

  • Chen, Ranjing & Cao, Yue & He, Tianyu & Si, Fengqi, 2025. "Multi-objective optimization for a combined heat and power unit with steam ejector at varied boundary: Energy, Economic and Environment (3E) analysis," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225013891
    DOI: 10.1016/j.energy.2025.135747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225013891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2021. "Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis," Energy, Elsevier, vol. 224(C).
    2. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    3. Zhang, Hongsheng & Liu, Xingang & Liu, Yifeng & Duan, Chenghong & Dou, Zhan & Qin, Jiyun, 2021. "Energy and exergy analyses of a novel cogeneration system coupled with absorption heat pump and organic Rankine cycle based on a direct air cooling coal-fired power plant," Energy, Elsevier, vol. 229(C).
    4. Liu, Miaomiao & Liu, Ming & Wang, Yu & Chen, Weixiong & Yan, Junjie, 2021. "Thermodynamic optimization of coal-fired combined heat and power (CHP) systems integrated with steam ejectors to achieve heat–power decoupling," Energy, Elsevier, vol. 229(C).
    5. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omidali, 2019. "Energy, exergy and environmental (3E) analysis of the existing CHP system in a petrochemical plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 234-242.
    6. Li, Hailong & Sun, Qie & Zhang, Qi & Wallin, Fredrik, 2015. "A review of the pricing mechanisms for district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 56-65.
    7. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
    8. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    9. Ghafariasl, Parviz & Mahmoudan, Alireza & Mohammadi, Mahmoud & Nazarparvar, Aria & Hoseinzadeh, Siamak & Fathali, Mani & Chang, Shing & Zeinalnezhad, Masoomeh & Garcia, Davide Astiaso, 2024. "Neural network-based surrogate modeling and optimization of a multigeneration system," Applied Energy, Elsevier, vol. 364(C).
    10. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    11. Tang, Yongzhi & Zhong, Zilong & Liu, Zhongliang & Lu, Lin & Huang, Yichen & Wen, Chuang, 2025. "Study on evolution law of non-equilibrium phase transition flow and performance improvement of steam ejector for MED-TVC desalination system," Energy, Elsevier, vol. 316(C).
    12. Pena-Bello, A. & Barbour, E. & Gonzalez, M.C. & Patel, M.K. & Parra, D., 2019. "Optimized PV-coupled battery systems for combining applications: Impact of battery technology and geography," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 978-990.
    13. Hao, Jiahao & Zheng, Pingyang & Li, Yanan & Zhang, Zhentao & Zhang, Jiajun & Yang, Junling & Yue, Yunkai & Li, Xiaoqiong, 2024. "Study on the operational feasibility domain of combined heat and power generation system based on compressed carbon dioxide energy storage," Energy, Elsevier, vol. 291(C).
    14. Cao, Yue & Hu, Hui & Chen, Ranjing & He, Tianyu & Si, Fengqi, 2023. "Comparative analysis on thermodynamic performance of combined heat and power system employing steam ejector as cascaded heat sink," Energy, Elsevier, vol. 275(C).
    15. Liu, Miaomiao & Liu, Ming & Liu, Rongtang & Chen, Weixiong & Yan, Junjie, 2024. "Energy saving scheduling of power and two steam loads for a CHP system consisting of multiple CHP units integrated with steam ejectors," Energy, Elsevier, vol. 308(C).
    16. Liao, Chunhui & Ertesvåg, Ivar S. & Zhao, Jianing, 2013. "Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China," Energy, Elsevier, vol. 57(C), pages 671-681.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhenpu & Xu, Jing & Ma, Suxia & Zhao, Guanjia & Wang, Jianfei & Gu, Yujiong, 2025. "Comparative investigation on heat pump solutions for peak shaving and heat-power decoupling in combined heat and power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    2. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    3. Li, Jiajia & Li, Xingshuo & Yan, Peigang & Zhou, Guowen & Liu, Jinfu & Yu, Daren, 2023. "Thermodynamics, flexibility and techno-economics assessment of a novel integration of coal-fired combined heating and power generation unit and compressed air energy storage," Applied Energy, Elsevier, vol. 339(C).
    4. Urazel, Burak & Keskin, Kemal, 2023. "A new solution approach for non-convex combined heat and power economic dispatch problem considering power loss," Energy, Elsevier, vol. 278(PB).
    5. Ragab El-Sehiemy & Abdullah Shaheen & Ahmed Ginidi & Mostafa Elhosseini, 2022. "A Honey Badger Optimization for Minimizing the Pollutant Environmental Emissions-Based Economic Dispatch Model Integrating Combined Heat and Power Units," Energies, MDPI, vol. 15(20), pages 1-22, October.
    6. Ahmed Ginidi & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ragab El-Sehiemy, 2021. "An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
    7. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    8. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Xiong, Guojiang & Shuai, Maohang & Hu, Xiao, 2022. "Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization," Energy, Elsevier, vol. 244(PB).
    10. Tailu Li & Xuelong Li & Haiyang Gao & Xiang Gao & Nan Meng, 2022. "Thermodynamic Performance of Geothermal Energy Cascade Utilization for Combined Heating and Power Based on Organic Rankine Cycle and Vapor Compression Cycle," Energies, MDPI, vol. 15(19), pages 1-24, October.
    11. Hossein Nourianfar & Hamdi Abdi, 2022. "Environmental/Economic Dispatch Using a New Hybridizing Algorithm Integrated with an Effective Constraint Handling Technique," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    12. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.
    13. Ghasemi-Marzbali, Ali & Shafiei, Mohammad & Ahmadiahangar, Roya, 2023. "Day-ahead economical planning of multi-vector energy district considering demand response program," Applied Energy, Elsevier, vol. 332(C).
    14. Sharma, Abhimanyu & Padhy, Narayana Prasad, 2024. "Iterative convex relaxation of unbalanced power distribution system integrated multi-energy systems," Energy, Elsevier, vol. 294(C).
    15. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Shunyong Yin & Jianjun Xia & Yi Jiang, 2020. "Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China," Energies, MDPI, vol. 13(1), pages 1-14, January.
    17. Rizk-Allah, Rizk M. & Hassanien, Aboul Ella & Snášel, Václav, 2022. "A hybrid chameleon swarm algorithm with superiority of feasible solutions for optimal combined heat and power economic dispatch problem," Energy, Elsevier, vol. 254(PC).
    18. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    19. He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
    20. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225013891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.