IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225013234.html
   My bibliography  Save this article

Hydrothermal modeling and decoupling analysis for secondary district heating systems: A digital twin approach

Author

Listed:
  • Liu, Zhikai
  • Dai, Ting
  • Zhang, Lian
  • Xu, Xin
  • Zhang, Qi
  • Wang, Yaran

Abstract

With the rapid development of Internet of Things technology, the concept of digital twins has emerged. By constructing a digital secondary district heating system (DHS), it can help the operation and maintenance staff of the thermal company to comprehensively understand the impact of different control strategies on room temperature and energy consumption, thus reducing operating costs. On the other hand, it is difficult to realize the decoupling experiment of thermal and hydraulic characteristics of the secondary DHS under the existing test conditions. In this paper, a hydrothermal coupling model of the secondary DHS is developed through the joint simulation of EnergyPlus and Matlab. The proposed modeling method is validated using real-world engineering projects. Based on this model, a decoupling analysis is conducted to provide deeper insights into the dynamic characteristics of secondary DHS. This analysis further clarifies the different levels of control tasks managed by the supply temperature and terminal flow rate regulation. The results demonstrate that adopting a terminal flow rate control strategy can improve residential thermal comfort while achieving energy savings of 12.2 %–15.4 %.

Suggested Citation

  • Liu, Zhikai & Dai, Ting & Zhang, Lian & Xu, Xin & Zhang, Qi & Wang, Yaran, 2025. "Hydrothermal modeling and decoupling analysis for secondary district heating systems: A digital twin approach," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013234
    DOI: 10.1016/j.energy.2025.135681
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225013234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Saloux, Etienne & Runge, Jason & Zhang, Kun, 2023. "Operation optimization of multi-boiler district heating systems using artificial intelligence-based model predictive control: Field demonstrations," Energy, Elsevier, vol. 285(C).
    2. Eduardo Roque & Romeu Vicente & Ricardo M. S. F. Almeida & Victor M. Ferreira, 2022. "The Impact of Thermal Inertia on the Indoor Thermal Environment of Light Steel Framing Constructions," Energies, MDPI, vol. 15(9), pages 1-17, April.
    3. Østergaard, Dorte Skaarup & Tunzi, Michele & Svendsen, Svend, 2021. "What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently," Energy, Elsevier, vol. 227(C).
    4. Lee, Tae-Kyu & Kim, Jeong-Uk, 2024. "Two processes based on a data-driven model combined with dynamic simulation for demand forecasting and providing energy saving measures," Energy, Elsevier, vol. 300(C).
    5. Liu, Zhikai & Zhang, Huang & Wang, Yaran & Fan, Xianwang & You, Shijun & Li, Ang, 2023. "Data-driven predictive model for feedback control of supply temperature in buildings with radiator heating system," Energy, Elsevier, vol. 280(C).
    6. Theofanis Benakopoulos & Robbe Salenbien & Dirk Vanhoudt & Svend Svendsen, 2019. "Improved Control of Radiator Heating Systems with Thermostatic Radiator Valves without Pre-Setting Function," Energies, MDPI, vol. 12(17), pages 1-24, August.
    7. Liu, Lanbin & Fu, Lin & Jiang, Yi & Guo, Shan, 2011. "Major issues and solutions in the heat-metering reform in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 673-680, January.
    8. Yuan, Jianjuan & Huang, Ke & Han, Zhao & Zhou, Zhihua & Lu, Shilei, 2021. "A new feedback predictive model for improving the operation efficiency of heating station based on indoor temperature," Energy, Elsevier, vol. 222(C).
    9. Yuan, Jianjuan & Huang, Ke & Lu, Shilei & Zhang, Ji & Han, Zhao & Zhou, Zhihua, 2022. "Analysis of influencing factors on heat consumption of large residential buildings with different occupancy rates-Tianjin case study," Energy, Elsevier, vol. 238(PC).
    10. Cui, Xuyang & Zhu, Junda & Jia, Lifu & Wang, Jiahui & Wu, Yusen, 2024. "A novel heat load prediction model of district heating system based on hybrid whale optimization algorithm (WOA) and CNN-LSTM with attention mechanism," Energy, Elsevier, vol. 312(C).
    11. Serra, Adrià & Ortiz, Alberto & Cortés, Pau Joan & Canals, Vincent, 2025. "Explainable district heating load forecasting by means of a reservoir computing deep learning architecture," Energy, Elsevier, vol. 318(C).
    12. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
    13. Dong, Shengming & Liu, Tong & Hu, Xiaowei & Zhang, Chen & Hu, Pengli & Zhuang, Wenhui & Liu, Qiyou, 2025. "Investigation on the long short-term memory-based models for rural heating load prediction in Northeast China," Energy, Elsevier, vol. 318(C).
    14. Boghetti, Roberto & Kämpf, Jérôme H., 2024. "Verification of an open-source Python library for the simulation of district heating networks with complex topologies," Energy, Elsevier, vol. 290(C).
    15. Tehrani, Alireza Attarhay & Sobhaninia, Saeideh & Nikookar, Niloofar & Levinson, Ronnen & Sailor, David J. & Amaripadath, Deepak, 2025. "Data-driven approach to estimate urban heat island impacts on building energy consumption," Energy, Elsevier, vol. 316(C).
    16. del Hoyo Arce, Itzal & Herrero López, Saioa & López Perez, Susana & Rämä, Miika & Klobut, Krzysztof & Febres, Jesus A., 2018. "Models for fast modelling of district heating and cooling networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1863-1873.
    17. Liu, Zhikai & Zhang, Huan & Wang, Yaran & Song, Zixu & You, Shijun & Jiang, Yan & Wu, Zhangxiang, 2022. "A thermal-hydraulic coupled simulation approach for the temperature and flow rate control strategy evaluation of the multi-room radiator heating system," Energy, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhikai & Zhang, Huang & Wang, Yaran & Fan, Xianwang & You, Shijun & Li, Ang, 2023. "Data-driven predictive model for feedback control of supply temperature in buildings with radiator heating system," Energy, Elsevier, vol. 280(C).
    2. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Svendsen, Svend, 2021. "Strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 231(C).
    3. Liu, Zhikai & Zhang, Huan & Wang, Yaran & You, Shijun & Dai, Ting & Jiang, Yan, 2024. "Evaluation of the controllability of multi-family building with radiator heating systems: A frequency domain approach," Energy, Elsevier, vol. 294(C).
    4. Tunzi, Michele & Benakopoulos, Theofanis & Yang, Qinjiang & Svendsen, Svend, 2023. "Demand side digitalisation: A methodology using heat cost allocators and energy meters to secure low-temperature operations in existing buildings connected to district heating networks," Energy, Elsevier, vol. 264(C).
    5. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Hansen, Kasper Klan & Svendsen, Svend, 2022. "Implementation of a strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 251(C).
    6. Sun, Chunhua & Yan, Hao & Cao, Shanshan & Xia, Guoqiang & Liu, Yanan & Wu, Xiangdong, 2024. "A control strategy considering buildings’ thermal characteristics to mitigate heat supply-demand mismatches in district heating systems," Energy, Elsevier, vol. 307(C).
    7. Xie, Zichan & Wang, Haichao & Hua, Pengmin & Björkstam, Maximilian & Lahdelma, Risto, 2024. "Dynamic thermal simulation of a tree-shaped district heating network based on discrete event simulation," Energy, Elsevier, vol. 313(C).
    8. Vannahme, Anna & Patel, Dharmik & Schmitt, David & Summ, Thorsten & Trinkl, Christoph & Schrag, Tobias, 2024. "Technical and economic analysis of digitally controlled substations in local district heating networks," Energy, Elsevier, vol. 312(C).
    9. Sun, Chunhua & Yan, Hao & Yuan, Lingyu & Cao, Shanshan & Ma, Weichi & Suo, Chenyu & Qi, Chengying & Wu, Xiangdong, 2024. "A refined classification method of heat customers to improve inter-household thermal balance intelligent control and regulation," Energy, Elsevier, vol. 304(C).
    10. De la Cruz-Loredo, Iván & Zinsmeister, Daniel & Licklederer, Thomas & Ugalde-Loo, Carlos E. & Morales, Daniel A. & Bastida, Héctor & Perić, Vedran S. & Saleem, Arslan, 2023. "Experimental validation of a hybrid 1-D multi-node model of a hot water thermal energy storage tank," Applied Energy, Elsevier, vol. 332(C).
    11. Hu, Jinxue & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Zhao, Xiaoyu & Yuan, Xiaoyang & Zhang, Chenyang, 2025. "A multi-energy load forecasting method based on the Mixture-of-Experts model and dynamic multilevel attention mechanism," Energy, Elsevier, vol. 324(C).
    12. Liu, Guoqiang & Zhou, Xuan & Yan, Junwei & Yan, Gang, 2021. "A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system," Energy, Elsevier, vol. 221(C).
    13. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    14. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    15. Muniak, Damian Piotr, 2014. "A new methodology to determine the pre-setting of the control valve in a heating installation. A general model," Applied Energy, Elsevier, vol. 135(C), pages 35-42.
    16. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    17. Liu, Lanbin, 2015. "Major issues and solutions in the management system of space heating system in North China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 221-231.
    18. Tommy Rosén & Louise Ödlund, 2019. "Active Management of Heat Customers Towards Lower District Heating Return Water Temperature," Energies, MDPI, vol. 12(10), pages 1-20, May.
    19. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    20. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.