IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics036054422501309x.html
   My bibliography  Save this article

Theoretical investigation of the effect of thermal barrier coating on ammonia combustion of marine medium speed engine

Author

Listed:
  • Wang, Yang
  • Zhang, Kai
  • Mu, Hongyu
  • Zhao, Xingtian
  • Zhang, Xiaolong
  • Hao, Shiyang
  • Liu, Long

Abstract

In recent years, with the introduction of dual carbon policies and ship emission regulations, marine engines are facing strict decarbonization standards. As a zero-carbon fuel, ammonia has a higher energy density than hydrogen and a high degree of industrialization, with relatively complete production, storage and transportation technologies. It is suitable for application in marine engines for long voyages. But at the same time, ammonia faces difficulties in igniting and organizing combustion due to its high ignition point and slow combustion rate. This article is based on a high-power density medium speed marine engine, and uses numerical simulation methods to explore the combustion performance of the engine under four different combustion modes and study the influence of piston coating on engine performance and thermal performance. The conclusions are as follows: the engine achieved normal combustion in all four different combustion modes; At high premixing ratios, ignition of ammonia using ignition method can achieve the highest cylinder burst pressure(31 MPa) and thermal efficiency (44.6 %), but at the same time, there will be a high pressure rise rate(21.1 bar/CA), which is not conducive to the safe operation of the engine; In terms of heat flow, under high premixed ratio conditions, due to the short combustion duration and heat transfer time, the heat transfer loss is relatively small. The analysis of wall thickness ratio shows that under high premixed conditions, the heat flux of the piston is relatively high(60 %), which is caused by the concentration of heat release near the top dead center; After adding the coating, the cylinder pressure and thermal efficiency of the engine were improved in various modes, and the temperature inside the cylinder also increased 18 °C at the end of compression and expansion, because the insulation performance of the coating reduced heat transfer losses. The addition of the coating reduces the heat flow of the piston by 50 % and the heat flow proportion by 20 %. The NOx emissions of all four combustion modes meet the Tier II standard, while the NOx emissions of L-10 and L-30 meet the Tier III standard, and the addition of coating will increase NOx emissions. The steady-state thermal analysis of the piston shows that adding coating can reduce the temperature of the piston surface by about 80 °C, reduce the thermal stress of the piston surface by about 21 %, and extend the service life of the piston parts.

Suggested Citation

  • Wang, Yang & Zhang, Kai & Mu, Hongyu & Zhao, Xingtian & Zhang, Xiaolong & Hao, Shiyang & Liu, Long, 2025. "Theoretical investigation of the effect of thermal barrier coating on ammonia combustion of marine medium speed engine," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s036054422501309x
    DOI: 10.1016/j.energy.2025.135667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422501309X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Zhen & Ye, Jianpeng & Gui, Yong & Lu, Tianlong & Shi, Lei & An, Yanzhao & Wang, Tianyou, 2023. "Numerical study of the compression ignition of ammonia in a two-stroke marine engine by using HTCGR strategy," Energy, Elsevier, vol. 276(C).
    2. Xu, Leilei & Xu, Shijie & Bai, Xue-Song & Repo, Juho Aleksi & Hautala, Saana & Hyvönen, Jari, 2023. "Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).
    4. Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
    5. Yao, Mingfa & Ma, Tianyu & Wang, Hu & Zheng, Zunqing & Liu, Haifeng & Zhang, Yan, 2018. "A theoretical study on the effects of thermal barrier coating on diesel engine combustion and emission characteristics," Energy, Elsevier, vol. 162(C), pages 744-752.
    6. Zhou, Xinyi & Li, Tie & Wang, Ning & Wang, Xinran & Chen, Run & Li, Shiyan, 2023. "Pilot diesel-ignited ammonia dual fuel low-speed marine engines: A comparative analysis of ammonia premixed and high-pressure spray combustion modes with CFD simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Cui, Jingchen & Chen, Weize & Wang, Bing & Fan, Yuanzhi & Tian, Hua & Long, Wuqiang & Liu, Xing, 2024. "Effects of relative position of injectors on the performance of ammonia/diesel two-stroke engines," Energy, Elsevier, vol. 309(C).
    8. Lee, Jeongwoo & Park, Cheolwoong & Jang, Ilpum & Kim, Minki & Park, Gyeongtae & Kim, Yongrae, 2025. "Experimental research on the effect of diesel post-injection conditions on the efficiency and global warming potential in a single-cylinder four-stroke marine engine fueled with ammonia and diesel," Energy, Elsevier, vol. 314(C).
    9. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    10. Taymaz, Imdat, 2006. "An experimental study of energy balance in low heat rejection diesel engine," Energy, Elsevier, vol. 31(2), pages 364-371.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yanhui & Zhang, Jian & Zhang, Zhiqing & Zhang, Bin & Hu, Jingyi & Zhong, Weihuang & Ye, Yanshuai, 2024. "Effect of ammonia energy ratio and load on combustion and emissions of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 302(C).
    2. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    3. Cheng, Qiang & Muhammad, Akram & Kaario, Ossi & Ahmad, Zeeshan & Martti, Larmi, 2025. "Ammonia as a sustainable fuel: Review and novel strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    4. Zhang, Yan & Wu, Dawei & Nadimi, Ebrahim & Tsolakis, Athanasios & Przybyla, Grzegorz & Adamczyk, Wojciech, 2025. "Genetic algorithm-assisted multi-objective optimization for developing a Multi-Wiebe Combustion model in ammonia-diesel dual fuel engines," Energy, Elsevier, vol. 325(C).
    5. Shi, Cheng & Duan, Ruiling & Cheng, Tengfei & Nie, Fuquan & Yan, Xiaodong & Zhu, Jian, 2025. "Understanding the role of ammonia combined injection in improving combustion and emissions characteristics for heavy-duty CI engine," Energy, Elsevier, vol. 324(C).
    6. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).
    7. Xu, Leilei & Xu, Shijie & Bai, Xue-Song & Repo, Juho Aleksi & Hautala, Saana & Hyvönen, Jari, 2023. "Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Yin, Bingqian & Lu, Zhen & Shi, Lei & Lu, Tianlong & Ye, Jianpeng & Ma, Junqing & Wang, Tianyou, 2024. "Numerical simulation of a spark ignition ammonia marine engine for future ship power applications," Energy, Elsevier, vol. 302(C).
    9. Jin, Zhuoying & Mi, Shijie & Zhou, Dezhi & Zhu, Jizhen & Schirru, Andrea & Zhao, Wenbin & Qian, Yong & Lucchini, Tommaso & Lu, Xingcai, 2024. "Insights into the combustion characteristics, emission formation sources, and optimization strategy of an ammonia-diesel dual-fuel engine under high ammonia ratio conditions," Applied Energy, Elsevier, vol. 373(C).
    10. Dong, Pengbo & Liu, Kunlong & Zhang, Lenan & Zhang, Zhenxian & Long, Wuqiang & Tian, Hua, 2024. "Study on the synergistic control of nitrogenous emissions and greenhouse gas of ammonia/diesel dual direct injection two-stroke engine," Energy, Elsevier, vol. 307(C).
    11. Lu, Gangao & Wang, Zuoqun & Fan, Liyun & Gu, Yuanqi & Xu, Jianxin & Wu, Yuelin & Xiao, Youhong, 2024. "Research on the pressure fluctuations and hydraulic resonance phenomena in the high-pressure pipelines of marine common rail systems," Energy, Elsevier, vol. 313(C).
    12. Kumar, Laveet & Sleiti, Ahmad K., 2024. "Systematic review on ammonia as a sustainable fuel for combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    13. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    14. Dong, Pengbo & Chen, Shihao & Zhang, Lenan & Zhang, Zhenxian & Long, Wuqiang & Wang, Qingyang & Chen, Weize, 2024. "Ammonia diffusion combustion and emission formation characteristics in a single cylinder two stroke engine," Energy, Elsevier, vol. 311(C).
    15. Cui, Jingchen & Chen, Weize & Wang, Bing & Fan, Yuanzhi & Tian, Hua & Long, Wuqiang & Liu, Xing, 2024. "Effects of relative position of injectors on the performance of ammonia/diesel two-stroke engines," Energy, Elsevier, vol. 309(C).
    16. Wang, Huaiyu & Ji, Changwei & Wang, Du & Wang, Zhe & Yang, Jinxin & Meng, Hao & Shi, Cheng & Wang, Shuofeng & Wang, Xin & Ge, Yunshan & Yang, Wenming, 2023. "Investigation on the potential of using carbon-free ammonia and hydrogen in small-scaled Wankel rotary engines," Energy, Elsevier, vol. 283(C).
    17. Wang, Kai & Li, Zhongwei & Zhang, Rui & Ma, Ranqi & Huang, Lianzhong & Wang, Zhuang & Jiang, Xiaoli, 2025. "Computational fluid dynamics-based ship energy-saving technologies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    18. Wang, Xinran & Li, Tie & Chen, Run & Li, Shiyan & Kuang, Min & Lv, Yibin & Wang, Yu & Rao, Honghua & Liu, Yanzhao & Lv, Xiaodong, 2024. "Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines - Effects of diesel injection timing and ammonia energetic ratio," Applied Energy, Elsevier, vol. 357(C).
    19. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    20. Qian, Xiaoru & Yan, Peigang & Wang, Xiangfeng & Han, Wanjin, 2023. "Effect of thermal barrier coatings and integrated cooling on the conjugate heat transfer and thermal stress distribution of nickel-based superalloy turbine vanes," Energy, Elsevier, vol. 277(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s036054422501309x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.