IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v321y2025ics0360544225011156.html
   My bibliography  Save this article

Techno-economic assessment of geothermal energy extraction from abandoned oil and gas fields using hybrid U-shaped closed-loop system

Author

Listed:
  • Chappidi, Srinivas
  • Kumar, Ankesh
  • Singh, Jogender

Abstract

The present study investigates the Hybrid U-Shaped Closed-Loop Geothermal System (HCLGS), a novel approach designed to enhance geothermal energy extraction from abandoned oil and gas wells (AOGWs). The HCLGS integrates the conventional insulated U-shaped closed-loop system (IUCLGS) with the coaxial double pipe system, enabling improved thermal energy extraction. The study evaluates the techno-economic performance of the HCLGS in comparison to the IUCLGS and analyses the feasibility of retrofitting AOGWs as geothermal wells for direct heating applications. To assess the economic competitiveness, the levelized cost of heat (LCoH) was calculated, considering the system's thermal performance. The results showed that the HCLGS extracted up to 17 % higher thermal power at 11 % lesser LCoH compared to the IUCLGS. Furthermore, retrofitting an abandoned directional well into the HCLGS reduced the LCoH by 66 % compared to drilling a new well. These findings emphasize the potential of the HCLGS as a transformative solution for sustainable geothermal energy extraction, offering direct heat applications while reducing costs and supporting global renewable energy goals.

Suggested Citation

  • Chappidi, Srinivas & Kumar, Ankesh & Singh, Jogender, 2025. "Techno-economic assessment of geothermal energy extraction from abandoned oil and gas fields using hybrid U-shaped closed-loop system," Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225011156
    DOI: 10.1016/j.energy.2025.135473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225011156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gharibi, Shabnam & Mortezazadeh, Emad & Hashemi Aghcheh Bodi, Seyed Jalaledin & Vatani, Ali, 2018. "Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger," Energy, Elsevier, vol. 153(C), pages 554-567.
    2. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    3. Tomislav Kurevija & Domagoj Vulin, 2011. "High Enthalpy Geothermal Potential of the Deep Gas Fields in Central Drava Basin, Croatia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(12), pages 3041-3052, September.
    4. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    5. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Wang, Ming, 2023. "Heat extraction performance evaluation of U-shaped well geothermal production system under different well-layout parameters and engineering schemes," Renewable Energy, Elsevier, vol. 203(C), pages 473-484.
    6. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    7. Wang, Guoying & Ma, Hongwei & Liu, Shaowei & Yang, Dong & Xu, Xiaokai & Fu, Mengxiong & Jia, Housheng, 2022. "Thermal power extraction from a deep, closed-loop, multi-level, multi-branch, U-shaped borehole heat exchanger geothermal system," Renewable Energy, Elsevier, vol. 198(C), pages 894-906.
    8. Lei, Zhihong & Zhang, Yanjun & Zhang, Senqi & Fu, Lei & Hu, Zhongjun & Yu, Ziwang & Li, Liangzhen & Zhou, Jian, 2020. "Electricity generation from a three-horizontal-well enhanced geothermal system in the Qiabuqia geothermal field, China: Slickwater fracturing treatments for different reservoir scenarios," Renewable Energy, Elsevier, vol. 145(C), pages 65-83.
    9. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    10. Santos, L. & Dahi Taleghani, A. & Elsworth, D., 2022. "Repurposing abandoned wells for geothermal energy: Current status and future prospects," Renewable Energy, Elsevier, vol. 194(C), pages 1288-1302.
    11. Duggal, R. & Rayudu, R. & Hinkley, J. & Burnell, J. & Wieland, C. & Keim, M., 2022. "A comprehensive review of energy extraction from low-temperature geothermal resources in hydrocarbon fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Macenić, M. & Kurevija, T. & Medved, I., 2020. "Novel geothermal gradient map of the Croatian part of the Pannonian Basin System based on data interpretation from 154 deep exploration wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. He, Yuting & Jia, Min & Li, Xiaogang & Yang, Zhaozhong & Song, Rui, 2021. "Performance analysis of coaxial heat exchanger and heat-carrier fluid in medium-deep geothermal energy development," Renewable Energy, Elsevier, vol. 168(C), pages 938-959.
    14. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Xie, Kun, 2014. "Evaluation of working fluids for geothermal power generation from abandoned oil wells," Applied Energy, Elsevier, vol. 118(C), pages 238-245.
    15. Caulk, Robert A. & Tomac, Ingrid, 2017. "Reuse of abandoned oil and gas wells for geothermal energy production," Renewable Energy, Elsevier, vol. 112(C), pages 388-397.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zolfagharroshan, Mohammad & Xu, Minghan & Boutot, Jade & Zueter, Ahmad F. & Tareen, Muhammad S.K. & Kang, Mary & Sasmito, Agus P., 2024. "Assessment of geothermal energy potential from abandoned oil and gas wells in Alberta, Canada," Applied Energy, Elsevier, vol. 375(C).
    2. Jello, Josiane & Baser, Tugce, 2023. "Utilization of existing hydrocarbon wells for geothermal system development: A review," Applied Energy, Elsevier, vol. 348(C).
    3. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    4. Al Saedi, A.Q. & Sharma, P. & Kabir, C.S., 2021. "A novel cyclical wellbore-fluid circulation strategy for extracting geothermal energy," Energy, Elsevier, vol. 235(C).
    5. Rui-Jia Liu & Lin-Rui Jia & Wen-Shuo Zhang & Ming-Zhi Yu & Xu-Dong Zhao & Ping Cui, 2024. "Study of Heat Transfer Characteristics and Economic Analysis of a Closed Deep Coaxial Geothermal Heat Exchanger Retrofitted from an Abandoned Oil Well," Sustainability, MDPI, vol. 16(4), pages 1-21, February.
    6. Moussa, Tamer & Dehghanpour, Hassan, 2022. "Evaluating geothermal energy production from suspended oil and gas wells by using data mining," Renewable Energy, Elsevier, vol. 196(C), pages 1294-1307.
    7. Santos, L. & Dahi Taleghani, A. & Elsworth, D., 2022. "Repurposing abandoned wells for geothermal energy: Current status and future prospects," Renewable Energy, Elsevier, vol. 194(C), pages 1288-1302.
    8. Gao, Qian & Jin, Guang & Yu, Huagui & An, Erliang & Ghassemi, Ahmad & Zhou, Desheng & Meng, He, 2024. "Heat extraction from abandoned petroleum wells utilizing coaxial borehole heat exchanger in Ordos basin, China," Renewable Energy, Elsevier, vol. 230(C).
    9. Martina Tuschl & Tomislav Kurevija, 2023. "Revitalization Modelling of a Mature Oil Field with Bottom-Type Aquifer into Geothermal Resource—Reservoir Engineering and Techno-Economic Challenges," Energies, MDPI, vol. 16(18), pages 1-27, September.
    10. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    11. Yujiang He & Xianbiao Bu, 2020. "Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating," Energies, MDPI, vol. 13(10), pages 1-10, May.
    12. Cheng, Sharon W.Y. & Kurnia, Jundika C. & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2019. "Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method," Energy, Elsevier, vol. 188(C).
    13. Harshini, R.D.G.F. & Chaudhuri, A. & Ranjith, P.G, 2024. "Harnessing the heat below: Efficacy of closed-loop systems in the cooper basin, Australia," Energy, Elsevier, vol. 312(C).
    14. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    15. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Wang, Ming, 2023. "Heat extraction performance evaluation of U-shaped well geothermal production system under different well-layout parameters and engineering schemes," Renewable Energy, Elsevier, vol. 203(C), pages 473-484.
    16. Gharibi, Shabnam & Mortezazadeh, Emad & Hashemi Aghcheh Bodi, Seyed Jalaledin & Vatani, Ali, 2018. "Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger," Energy, Elsevier, vol. 153(C), pages 554-567.
    17. Anna Chmielowska & Anna Sowiżdżał & Barbara Tomaszewska, 2021. "Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    18. Yang, Yi & Huo, Yaowu & Xia, Wenkai & Wang, Xurong & Zhao, Pan & Dai, Yiping, 2017. "Construction and preliminary test of a geothermal ORC system using geothermal resource from abandoned oil wells in the Huabei oilfield of China," Energy, Elsevier, vol. 140(P1), pages 633-645.
    19. Tang, Hewei & Xu, Boyue & Hasan, A. Rashid & Sun, Zhuang & Killough, John, 2019. "Modeling wellbore heat exchangers: Fully numerical to fully analytical solutions," Renewable Energy, Elsevier, vol. 133(C), pages 1124-1135.
    20. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Huang, Guangping & Liu, Wei Victor, 2021. "Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 165(P1), pages 334-349.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225011156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.