A diffusion model-based framework to enhance the robustness of non-intrusive load disaggregation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135423
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Luo, Zheng & Lin, Xiaojie & Qiu, Tianyue & Li, Manjie & Zhong, Wei & Zhu, Lingkai & Liu, Shuangcui, 2024. "Investigation of hybrid adversarial-diffusion sample generation method of substations in district heating system," Energy, Elsevier, vol. 288(C).
- Wu, Xin & Jiao, Dian & Liang, Kaixin & Han, Xiao, 2019. "A fast online load identification algorithm based on V-I characteristics of high-frequency data under user operational constraints," Energy, Elsevier, vol. 188(C).
- Razzak, Abdur & Islam, Md. Tariqul & Roy, Palash & Razzaque, Md. Abdur & Hassan, Md. Rafiul & Hassan, Mohammad Mehedi, 2024. "Leveraging Deep Q-Learning to maximize consumer quality of experience in smart grid," Energy, Elsevier, vol. 290(C).
- Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Yang, Chao & Liang, Gaoqi & Liu, Jinjie & Liu, Guolong & Yang, Hongming & Zhao, Junhua & Dong, Zhaoyang, 2023. "A non-intrusive carbon emission accounting method for industrial corporations from the perspective of modern power systems," Applied Energy, Elsevier, vol. 350(C).
- Chen, Zhiqiang & Li, Jianbin & Cheng, Long & Liu, Xiufeng, 2023. "Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation," Applied Energy, Elsevier, vol. 334(C).
- Jiang, Yanni & Fang, Debin & Lei, Leyao, 2024. "Green electricity product menu design for retailers without knowing consumer environmental awareness," Energy Economics, Elsevier, vol. 139(C).
- Jiayi Deng & Yong Yao & Mumin Rao & Yi Yang & Chunkun Luo & Zhenyan Li & Xugang Hua & Bei Chen, 2025. "Automated Detection Method for Bolt Detachment of Wind Turbines in Low-Light Scenarios," Energies, MDPI, vol. 18(9), pages 1-25, April.
- Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
- Haixia Gu & Gaojun Liu & Jixue Li & Hongyun Xie & Hanguan Wen, 2023. "A Framework Based on Deep Learning for Predicting Multiple Safety-Critical Parameter Trends in Nuclear Power Plants," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
- Zhang, Xiangyu & Glaws, Andrew & Cortiella, Alexandre & Emami, Patrick & King, Ryan N., 2025. "Deep generative models in energy system applications: Review, challenges, and future directions," Applied Energy, Elsevier, vol. 380(C).
- Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
- Claeys, Robbert & Cleenwerck, Rémy & Knockaert, Jos & Desmet, Jan, 2024. "Capturing multiscale temporal dynamics in synthetic residential load profiles through Generative Adversarial Networks (GANs)," Applied Energy, Elsevier, vol. 360(C).
- Liu, Yuntao & Song, Yutong & Cui, Can, 2025. "Towards smart control and energy efficiency for multi-zone ventilation systems via an imitation-interaction learning method in energy-aware buildings," Energy, Elsevier, vol. 314(C).
- Elinor Ginzburg-Ganz & Eden Dina Horodi & Omar Shadafny & Uri Savir & Ram Machlev & Yoash Levron, 2025. "Statistical Foundations of Generative AI for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions," Energies, MDPI, vol. 18(10), pages 1-54, May.
- Yin, Linfei & Lin, Chen, 2024. "Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems," Energy, Elsevier, vol. 298(C).
- Turowski, M. & Heidrich, B. & Weingärtner, L. & Springer, L. & Phipps, K. & Schäfer, B. & Mikut, R. & Hagenmeyer, V., 2024. "Generating synthetic energy time series: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010655. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.