IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics036054422500982x.html
   My bibliography  Save this article

Optimal real-time flexibility scheduling for community integrated energy system considering consumer psychology: A cloud-edge collaboration based framework

Author

Listed:
  • Zhang, Wei
  • Wu, Jie

Abstract

The community integrated energy system (CIES) has emerged as a prominent solution for enhancing the flexibility of the distribution system with high renewable energy penetration by the seamless integration and coordination of heterogeneous energy sources and demand-side flexibility resources. However, with the escalating computational demands and massive data traffic of the energy internet, the limited computing resources at the centralized cloud engender substantial hurdles in holistic scheduling. Besides, the flexibility response potential of considerable resources in community users is constrained by multiple subjective factors. To this end, a cloud-edge collaboration based real-time flexibility scheduling framework incorporating consumer psychology is proposed to accelerate the intellectualization and flexibility of CIES. Firstly, a foundational CIES model integrates electricity, heat, and natural gas networks is comprehensively established, implementing tiered utilization of diverse energy flows for synergies. Then, a cloud-edge collaboration hierarchical scheduling strategy is proposed to manage CIES. For the application layer, a demand-side hybrid load aggregation model is developed based on the load characteristics. Subsequentially, a coordinated control method incorporating the optimal task offloading strategy and hierarchical scheduling strategy is introduced for the distributed coordination layer and centralized control layer. Finally, the consumer psychology is investigated during the hierarchical scheduling process by modelling user behavior through the fuzzy response mechanism based on logistic function. The proposed approach optimizes the real-time scheduling of CIES by reducing system latency and improving demand-side flexibility, thereby lowering operational costs. Simulation results demonstrate a notable enhancement in flexibility provision, with upward and downward flexibility increasing by approximately 11.49 % and 11.93 %, respectively, compared to traditional real-time scheduling strategy. Furthermore, the integration of cloud-edge collaboration reduces transmission latency by 10.23 % and computation latency by 1.46 %, thereby improving scheduling efficiency. Besides, electricity price incentives and latency issues significantly influence user response willingness, necessitating comprehensive consideration in practical applications.

Suggested Citation

  • Zhang, Wei & Wu, Jie, 2025. "Optimal real-time flexibility scheduling for community integrated energy system considering consumer psychology: A cloud-edge collaboration based framework," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500982x
    DOI: 10.1016/j.energy.2025.135340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500982X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Haoran & Hou, Hongjuan & Deng, Min & Si, Lengge & Wang, Xi & Hu, Eric & Zhou, Rhonin, 2024. "Stackelberg game theory based model to guide users’ energy use behavior, with the consideration of flexible resources and consumer psychology, for an integrated energy system," Energy, Elsevier, vol. 288(C).
    2. Zhou, Yuan & Wang, Jiangjiang & Yang, Mingxu & Xu, Hangwei, 2023. "Hybrid active and passive strategies for chance-constrained bilevel scheduling of community multi-energy system considering demand-side management and consumer psychology," Applied Energy, Elsevier, vol. 349(C).
    3. Saberi-Beglar, Kasra & Zare, Kazem & Seyedi, Heresh & Marzband, Mousa & Nojavan, Sayyad, 2023. "Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads," Applied Energy, Elsevier, vol. 329(C).
    4. Xia, Qinqin & Wang, Yu & Zou, Yao & Yan, Ziming & Zhou, Niancheng & Chi, Yuan & Wang, Qianggang, 2024. "Regional-privacy-preserving operation of networked microgrids: Edge-cloud cooperative learning with differentiated policies," Applied Energy, Elsevier, vol. 370(C).
    5. Haghnegahdar, Lida & Chen, Yu & Wang, Yong, 2022. "Enhancing dynamic energy network management using a multiagent cloud-fog structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Schaefer, Jones Luís & Mairesse Siluk, Julio Cezar & Stefan de Carvalho, Patrícia & Maria de Miranda Mota, Caroline & Pinheiro, José Renes & Nuno da Silva Faria, Pedro & Gouvea da Costa, Sergio Eduard, 2023. "A framework for diagnosis and management of development and implementation of cloud-based energy communities - Energy cloud communities," Energy, Elsevier, vol. 276(C).
    7. Ferdaus, Md Meftahul & Dam, Tanmoy & Anavatti, Sreenatha & Das, Sarobi, 2024. "Digital technologies for a net-zero energy future: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    8. Yang, Jun & Sun, Fengyuan & Wang, Haitao, 2023. "Distributed collaborative optimal economic dispatch of integrated energy system based on edge computing," Energy, Elsevier, vol. 284(C).
    9. Xue, Lin & Wang, Jianxue & Zhang, Yao & Yong, Weizhen & Qi, Jie & Li, Haotian, 2023. "Model-data-event based community integrated energy system low-carbon economic scheduling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Shuang Zeng & Heng Zhang & Fang Wang & Baoqun Zhang & Qiwen Ke & Chang Liu, 2024. "Two-Stage Optimization Scheduling of Integrated Energy Systems Considering Demand Side Response," Energies, MDPI, vol. 17(20), pages 1-23, October.
    11. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    12. Zhang, Meijuan & Yan, Qingyou & Guan, Yajuan & Ni, Da & Agundis Tinajero, Gibran David, 2024. "Joint planning of residential electric vehicle charging station integrated with photovoltaic and energy storage considering demand response and uncertainties," Energy, Elsevier, vol. 298(C).
    13. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Meihui & Xu, Zhenjiang & Zhu, Hongyu & Hwang Goh, Hui & Agustiono Kurniawan, Tonni & Liu, Tianhao & Zhang, Dongdong, 2024. "Integrated demand response modeling and optimization technologies supporting energy internet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    2. Zhou, Yuan & Wang, Jiangjiang & Yang, Mingxu & Xu, Hangwei, 2023. "Hybrid active and passive strategies for chance-constrained bilevel scheduling of community multi-energy system considering demand-side management and consumer psychology," Applied Energy, Elsevier, vol. 349(C).
    3. Li, Jiarui & Jiang, Zhiwei & Zhao, Yuan & Feng, Xiaolu & Zheng, Menglian, 2024. "An optimal load distribution and real-time control strategy for integrated energy system based on nonlinear model predictive control," Energy, Elsevier, vol. 308(C).
    4. Zhao, Junjie & Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2025. "A novel flexible load regulation and 4E-F multi-objective optimization for distributed renewable energy power generation system," Applied Energy, Elsevier, vol. 383(C).
    5. Zhou, Yuan & Wang, Jiangjiang & Wei, Changqi & Li, Yuxin, 2024. "A novel two-stage multi-objective dispatch model for a distributed hybrid CCHP system considering source-load fluctuations mitigation," Energy, Elsevier, vol. 300(C).
    6. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    7. Shi, Shaobo & Ji, Yuehui & Zhu, Lewei & Liu, Junjie & Gao, Xiang & Chen, Hao & Gao, Qiang, 2025. "Interactive optimization of electric vehicles and park integrated energy system driven by low carbon: An incentive mechanism based on Stackelberg game," Energy, Elsevier, vol. 318(C).
    8. Shi, Jie & Wang, Luhao & Lee, Wei-Jen & Cheng, Xingong & Zong, Xiju, 2019. "Hybrid Energy Storage System (HESS) optimization enabling very short-term wind power generation scheduling based on output feature extraction," Applied Energy, Elsevier, vol. 256(C).
    9. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    10. Clarke, Will Challis & Brear, Michael John & Manzie, Chris, 2020. "Control of an isolated microgrid using hierarchical economic model predictive control," Applied Energy, Elsevier, vol. 280(C).
    11. Fan, Songli & Xu, Guodong & Jiang, Baoping & Wu, Zhengtian & Xing, Haijun & Gao, Yang & Ai, Qian, 2025. "Low-carbon economic operation of commercial park-level integrated energy systems incorporating supply and demand flexibility," Energy, Elsevier, vol. 323(C).
    12. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    13. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).
    14. Yong Cui & Jian Zheng & Wenying Wu & Kun Xu & Desen Ji & Tian Di, 2024. "Framework and Outlooks of Multi-Source–Grid–Load Coordinated Low-Carbon Operational Systems Considering Demand-Side Hierarchical Response," Energies, MDPI, vol. 17(23), pages 1-20, December.
    15. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    16. Haibing Wang & Chengmin Wang & Weiqing Sun & Muhammad Qasim Khan, 2022. "Energy Pricing and Management for the Integrated Energy Service Provider: A Stochastic Stackelberg Game Approach," Energies, MDPI, vol. 15(19), pages 1-15, October.
    17. Zhihan Shi & Guangming Zhang & Xiaoxiong Zhou & Weisong Han & Mingxiang Zhu & Zhiqing Bai & Xiaodong Lv, 2023. "Research on Integrated Energy Distributed Sharing in Distribution Network Considering AC Power Flow and Demand Response," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
    18. Zhong, Junjie & Zhao, Yirui & Cao, Yijia, 2024. "Collaborative optimization for energy hub and load aggregator considering the carbon intensity-driven and uncertainty-aware," Energy, Elsevier, vol. 312(C).
    19. Daniel Icaza Alvarez & Fernando González-Ladrón-de-Guevara & Jorge Rojas Espinoza & David Borge-Diez & Santiago Pulla Galindo & Carlos Flores-Vázquez, 2025. "The Evolution of AI Applications in the Energy System Transition: A Bibliometric Analysis of Research Development, the Current State and Future Challenges," Energies, MDPI, vol. 18(6), pages 1-31, March.
    20. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500982x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.