IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics036054422500965x.html
   My bibliography  Save this article

Dual-working-modes-based negative output wide voltage gain range DC-DC converter with low input current ripple for fuel cells

Author

Listed:
  • Bi, Huakun
  • Wang, Runze
  • Meng, Chuijie

Abstract

A dual-working-modes-based negative output wide voltage-gain range DC-DC converter with low input current ripple is proposed in this paper. On the input voltage side, two Boost structures are connected in parallel, and the input current is split through two inductors, thereby reducing the volume of the inductors and improving the efficiency of the converter. When charging inductor, construct a higher charging voltage to increase the voltage gain of the converter. On the output voltage side, capacitors are discharged in series to further increase the voltage gain of the converter and reduce the voltage stress of the power semiconductors. The converter operates in synchronous mode when the duty cycle is less than or equal to 0.5, and in complementary mode when the duty cycle is greater than 0.5. The voltage gain in both modes can achieve smooth switching when the duty cycle is 0.5. By switching between different working modes, the voltage gain of the converter can be further improved and the input current ripple can be significantly reduced. The operating principle, characteristics, parameters design and comparison with other converters are analyzed. A 550W prototype is developed to verify the correctness of theoretical analysis.

Suggested Citation

  • Bi, Huakun & Wang, Runze & Meng, Chuijie, 2025. "Dual-working-modes-based negative output wide voltage gain range DC-DC converter with low input current ripple for fuel cells," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500965x
    DOI: 10.1016/j.energy.2025.135323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500965X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    2. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    3. Togun, Hussein & Basem, Ali & Abdulrazzaq, Tuqa & Biswas, Nirmalendu & Abed, Azher M. & dhabab, Jameel M. & Chattopadhyay, Anirban & Slimi, Khalifa & Paul, Dipankar & Barmavatu, Praveen & Chrouda, Ama, 2025. "Development and comparative analysis between battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV)," Applied Energy, Elsevier, vol. 388(C).
    4. Ma, Yan & Hu, Fuyuan & Hu, Yunfeng, 2023. "Energy efficiency improvement of intelligent fuel cell/battery hybrid vehicles through an integrated management strategy," Energy, Elsevier, vol. 263(PE).
    5. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    6. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    7. Benmouna, A. & Becherif, M. & Boulon, L. & Dépature, C. & Ramadan, Haitham S., 2021. "Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control," Renewable Energy, Elsevier, vol. 178(C), pages 1291-1302.
    8. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    9. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    10. Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
    11. Büyük, Mehmet & İnci, Mustafa, 2023. "Improved drift-free P&O MPPT method to enhance energy harvesting capability for dynamic operating conditions of fuel cells," Energy, Elsevier, vol. 267(C).
    12. Zhou, Hongxu & Yu, Zhongwei & Wu, Xiaohua & Fan, Zhanfeng & Yin, Xiaofeng & Zhou, Lingxue, 2023. "Dynamic programming improved online fuzzy power distribution in a demonstration fuel cell hybrid bus," Energy, Elsevier, vol. 284(C).
    13. Remzi Can Samsun & Michael Rex & Laurent Antoni & Detlef Stolten, 2022. "Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives," Energies, MDPI, vol. 15(14), pages 1-34, July.
    14. Yang, Jibin & Chen, Li & Zhang, Bo & Zhang, Han & Chen, Bo & Wu, Xiaohua & Deng, Pengyi & Xu, Xiaohui, 2025. "Remaining useful life prediction for vehicle-oriented PEMFCs based on organic gray neural network considering the influence of dual energy source synergy," Energy, Elsevier, vol. 322(C).
    15. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    16. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Xia, Weiyi & Ren, Zhouyang & Qin, Huiling & Dong, ZhaoYang, 2024. "A coordinated operation method for networked hydrogen-power-transportation system," Energy, Elsevier, vol. 296(C).
    18. Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    19. Josué Lara-Reyes & Mario Ponce-Silva & Leobardo Hernández-González & Susana E. DeLeón-Aldaco & Claudia Cortés-García & Jazmin Ramirez-Hernandez, 2022. "Series RLC Resonant Circuit Used as Frequency Multiplier," Energies, MDPI, vol. 15(24), pages 1-18, December.
    20. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500965x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.