IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225009442.html
   My bibliography  Save this article

An improved lumped parameter model for calculating piston motion of ionic compressors under pneumatic and hydraulic systems

Author

Listed:
  • Kang, Xiang
  • Liu, Zekun
  • Feng, Shiyu
  • Lv, Yuan
  • Li, Yun

Abstract

Ionic compressors are promising as core equipment for hydrogen refueling stations. Lumped parameter models (LPMs) were extensively adopted due to their fast calculation speed in the former studies to investigate the working characteristics of ionic compressors. However, previous LPMs were incapable of calculating liquid overflow amount and pressure rise caused by liquid slugging due to their assumption of no liquid loss in gas cylinders. This paper proposes an improved LPM of pneumatic systems considering liquid slugging and overflow. A virtual piston is assumed to ensure equal pressures of the gas and liquid. The flow rates of gas and liquid are subject to their fractions at the valve aperture, which are also related to whether liquid slugging occurs. A CFD model is established to verify the feasibility of the proposed LPM. Moreover, an LPM is established incorporating both hydraulic and pneumatic systems to solve their working process during multiple cycles. Rapid drops in the piston velocity occur at the end of the discharge and suction stages, respectively. They are due to the pressure limitation of the relief valve and piston insertion into the buffer structure. The hydraulic system can avoid piston overload effectively and ensure the working stability of the compressor.

Suggested Citation

  • Kang, Xiang & Liu, Zekun & Feng, Shiyu & Lv, Yuan & Li, Yun, 2025. "An improved lumped parameter model for calculating piston motion of ionic compressors under pneumatic and hydraulic systems," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009442
    DOI: 10.1016/j.energy.2025.135302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225009442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Qiwei Lai & Liang Liang & Jing Li & Shijing Wu & Jun Liu, 2016. "Modeling and Analysis on Cushion Characteristics of Fast and High-Flow-Rate Hydraulic Cylinder," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-17, August.
    2. Gouda, El Mehdi & Benaouicha, Mustapha & Neu, Thibault & Fan, Yilin & Luo, Lingai, 2022. "Flow and heat transfer characteristics of air compression in a liquid piston for compressed air energy storage," Energy, Elsevier, vol. 254(PB).
    3. Hu, Jibin & Wu, Wei & Yuan, Shihua & Jing, Chongbo, 2011. "Mathematical modelling of a hydraulic free-piston engine considering hydraulic valve dynamics," Energy, Elsevier, vol. 36(10), pages 6234-6242.
    4. Kazemi, Shabnam & Nor, Mohamad Iskandr Mohamad & Teoh, Wen Hui, 2020. "Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuanlu & Zhao, Zhenfeng & Zhao, Changlu & Zhang, Fujun & Wang, Shan, 2016. "Experimental study of hydraulic electronic unit injector in a hydraulic free piston engine," Applied Energy, Elsevier, vol. 179(C), pages 888-898.
    2. Antonio Algar & Javier Freire & Robert Castilla & Esteban Codina, 2021. "Simulation of Hydraulic Cylinder Cushioning," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    3. Mahmoud, Montaser & Alkhedher, Mohammad & Ramadan, Mohamad & Naher, Sumsun & Pullen, Keith, 2022. "An investigation on organic Rankine cycle incorporating a ground-cooled condenser: Working fluid selection and regeneration," Energy, Elsevier, vol. 249(C).
    4. Yuan, Chenheng & Feng, Huihua & He, Yituan & Xu, Jing, 2016. "Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging," Energy, Elsevier, vol. 102(C), pages 637-649.
    5. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling, simulation, and optimisation of a novel liquid piston system for energy recovery," Applied Energy, Elsevier, vol. 357(C).
    6. Jia, Boru & Zuo, Zhengxing & Feng, Huihua & Tian, Guohong & Smallbone, Andrew & Roskilly, A.P., 2016. "Effect of closed-loop controlled resonance based mechanism to start free piston engine generator: Simulation and test results," Applied Energy, Elsevier, vol. 164(C), pages 532-539.
    7. Hao Chen & Mingde Gong & Dingxuan Zhao & Wei Zhang & Wenbin Liu & Yue Zhang, 2022. "Design and Motion Characteristics of Active–Passive Composite Suspension Actuator," Mathematics, MDPI, vol. 10(22), pages 1-21, November.
    8. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
    9. Kang, Xiang & Liu, Zekun & Wu, Guangyu & Yang, Chengjiong & Li, Yun, 2025. "A novel method for measuring liquid amount inside cylinders of ionic compressors based on soft sensing," Renewable Energy, Elsevier, vol. 240(C).
    10. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    11. Chouder, Ryma & Benabdesselam, Azzedine & Stouffs, Pascal, 2023. "Modeling results of a new high performance free liquid piston engine," Energy, Elsevier, vol. 263(PD).
    12. Wu, Wei & Hu, Jibin & Yuan, Shihua, 2014. "Semi-analytical modelling of a hydraulic free-piston engine," Applied Energy, Elsevier, vol. 120(C), pages 75-84.
    13. Li, Jian & Yang, Zhen & Shen, Jun & Duan, Yuanyuan, 2023. "Enhancement effects of adding internal heat exchanger on dual-pressure evaporation organic Rankine cycle," Energy, Elsevier, vol. 265(C).
    14. Meng, Dongyu & Liu, Qiang & Ji, Zhongli, 2022. "Effects of two-phase expander on the thermoeconomics of organic double-flash cycles for geothermal power generation," Energy, Elsevier, vol. 239(PD).
    15. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2021. "Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems," Energy, Elsevier, vol. 228(C).
    16. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    17. Zhang, Shuanlu & Zhao, Changlu & Zhao, Zhenfeng & Ma, Fukang, 2015. "Combustion characteristics analysis of hydraulic free piston diesel engine," Applied Energy, Elsevier, vol. 160(C), pages 761-768.
    18. Liu, Yujie & Wu, Hui & Taleghani, Arash Dahi & Zhang, Kun & Zhang, Jinjiang & Yang, Ming & Zhang, Bo, 2024. "Effects of temperature-dependent viscosity on thermal drawdown-induced fracture flow channeling in enhanced geothermal systems," Renewable Energy, Elsevier, vol. 235(C).
    19. Zhao, Zhenfeng & Wang, Shan & Zhang, Shuanlu & Zhang, Fujun, 2016. "Thermodynamic and energy saving benefits of hydraulic free-piston engines," Energy, Elsevier, vol. 102(C), pages 650-659.
    20. Gouda, El Mehdi & Neu, Thibault & Benaouicha, Mustapha & Fan, Yilin & Subrenat, Albert & Luo, Lingai, 2023. "Experimental and numerical investigation on the flow and heat transfer behaviors during a compression–cooling–expansion cycle using a liquid piston for compressed air energy storage," Energy, Elsevier, vol. 277(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.