IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008254.html
   My bibliography  Save this article

Adaptive distribution topology learning on distributed source energisation and islanding

Author

Listed:
  • Moon, Sangkeun

Abstract

Monitoring and controlling power sources in the distribution system can be challenging, especially when integrating distributed energy sources (DERs). The presence of multiple DERs introduces fluctuation and complexity, which can result in entangled power flow directions. The direction of power flow represents a pivotal signal in this study to understand the DER behaviours regarding their power injection and intermittent characteristics. Therefore, the paper introduces directional connectivity through graph analysis to tackle uncertainty from DER interconnections where islanding detection and restoration rely on acyclic and unidirectional energy flows. We propose the topology imbalance concept to manage directional power flow, loops, and interconnections. Our model employs phase signals to track topology changes and build grid structures without prior configuration information. The process is explored using radial subsystems with multi-directional energy supply scenarios. The findings demonstrate that the model can create diverse network configurations by integrating DER interconnections and islanding in steady state radial systems. The study explores the relationship between energisation and source injections, focusing on the back-feeding behaviour of DERs. Test results indicate index ranges of up to 198 % for imbalance and 179 % for energisation, reflecting the locations of DER sources and the energy injected.

Suggested Citation

  • Moon, Sangkeun, 2025. "Adaptive distribution topology learning on distributed source energisation and islanding," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008254
    DOI: 10.1016/j.energy.2025.135183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ghasemi, Sasan & Moshtagh, Jamal, 2022. "Distribution system restoration after extreme events considering distributed generators and static energy storage systems with mobile energy storage systems dispatch in transportation systems," Applied Energy, Elsevier, vol. 310(C).
    2. Lin, Yanling & Bie, Zhaohong, 2018. "Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding," Applied Energy, Elsevier, vol. 210(C), pages 1266-1279.
    3. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    4. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Benefits analysis of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 165(C), pages 36-47.
    5. Zare Oskouei, Morteza & Mehrjerdi, Hasan & Babazadeh, Davood & Teimourzadeh Baboli, Payam & Becker, Christian & Palensky, Peter, 2022. "Resilience-oriented operation of power systems: Hierarchical partitioning-based approach," Applied Energy, Elsevier, vol. 312(C).
    6. Lv, Chaoxian & Liang, Rui & Jin, Wei & Chai, Yuanyuan & Yang, Tiankai, 2022. "Multi-stage resilience scheduling of electricity-gas integrated energy system with multi-level decentralized reserve," Applied Energy, Elsevier, vol. 317(C).
    7. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Operating principle of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 164(C), pages 245-257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ke & Xue, Yixun & Zhou, Yue & Li, Zening & Chang, Xinyue & Sun, Hongbin, 2024. "Distributed coordinated reconfiguration with soft open points for resilience-oriented restoration in integrated electric and heating systems," Applied Energy, Elsevier, vol. 365(C).
    2. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    3. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    4. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    6. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    7. Aithal, Avinash & Li, Gen & Wu, Jianzhong & Yu, James, 2018. "Performance of an electrical distribution network with Soft Open Point during a grid side AC fault," Applied Energy, Elsevier, vol. 227(C), pages 262-272.
    8. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).
    9. Dong, Lei & Sun, Shiting & Zhang, Shiming & Zhang, Tao & Pu, Tianjiao, 2024. "Distributed restoration for integrated electricity-gas-heating energy systems with an iterative loop scheme," Energy, Elsevier, vol. 304(C).
    10. Zhichun Yang & Fan Yang & Huaidong Min & Yu Shen & Xu Tang & Yun Hong & Liang Qin, 2023. "A Local Control Strategy for Voltage Fluctuation Suppression in a Flexible Interconnected Distribution Station Area Based on Soft Open Point," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    11. Wang, Chunling & Liu, Chunming & Zhou, Xiulin & Zhang, Gaoyuan, 2024. "Flexibility-based expansion planning of active distribution networks considering optimal operation of multi-community integrated energy systems," Energy, Elsevier, vol. 307(C).
    12. Bustos, Cristian & Watts, David & Olivares, Daniel, 2019. "The evolution over time of Distributed Energy Resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs," Applied Energy, Elsevier, vol. 256(C).
    13. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    14. Shamam Alwash & Sarmad Ibrahim & Azher M. Abed, 2022. "Distribution System Reconfiguration with Soft Open Point for Power Loss Reduction in Distribution Systems Based on Hybrid Water Cycle Algorithm," Energies, MDPI, vol. 16(1), pages 1-22, December.
    15. Eshan Karunarathne & Jagadeesh Pasupuleti & Janaka Ekanayake & Dilini Almeida, 2021. "The Optimal Placement and Sizing of Distributed Generation in an Active Distribution Network with Several Soft Open Points," Energies, MDPI, vol. 14(4), pages 1-20, February.
    16. Escalera, Alberto & Prodanović, Milan & Castronuovo, Edgardo D. & Roldan-Perez, Javier, 2020. "Contribution of active management technologies to the reliability of power distribution networks," Applied Energy, Elsevier, vol. 267(C).
    17. Xiao, Jun & Zu, Guoqiang & Wang, Ying & Zhang, Xinsong & Jiang, Xun, 2020. "Model and observation of dispatchable region for flexible distribution network," Applied Energy, Elsevier, vol. 261(C).
    18. Zhengqi Wang & Haoyu Zhou & Hongyu Su, 2022. "Disturbance Observer-Based Model Predictive Super-Twisting Control for Soft Open Point," Energies, MDPI, vol. 15(10), pages 1-19, May.
    19. Qi, Qi & Wu, Jianzhong & Long, Chao, 2017. "Multi-objective operation optimization of an electrical distribution network with soft open point," Applied Energy, Elsevier, vol. 208(C), pages 734-744.
    20. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.