IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225006875.html
   My bibliography  Save this article

Catalytic C/Fe sites activation of Fe3C embedded in carbon nanotubes by the incorporation of VN for multifunctional electrocatalytic properties

Author

Listed:
  • Li, Xiaoyi
  • Huang, Jianfeng
  • Chu, Dewei
  • Cao, Liyun
  • Zhang, Xiao
  • Chen, Qian
  • Kajiyoshi, Koji
  • Liu, Yijun
  • Feng, Liangliang

Abstract

The innovative design of highly efficient non-noble metal electrocatalysts with multifunctional properties is significant for energy conversion and storage systems. In this work, a novel VN/Fe3C heterostructured nanoparticle embedded in N-doped carbon nanotubes (VN/Fe3C@NCNT), in which the C site and Fe site of Fe3C are activated and upgraded by VN, respectively, is reported firstly as a multifunctional electrocatalyst towards hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Impressively, the fabricated zinc-air batteries (ZABs) based on VN/Fe3C@NCNT as air-cathode exhibit high power density (189.10 mW cm−2), a specific capacity of 667 mAh gZn−1, and long-term stability (over 600 cycles), outperforming the commercial Pt/C + IrO2-based ZABs. DFT calculations elucidate that VN serves as “electron activators” to not only activate CFe sites of Fe3C as the dominating active sites for HER, but also promote the activity of Fe sites for ORR due to the decrease of the O2 adsorption energy, thereby promoting the electrocatalytic reaction kinetics. This work opens up new insights into the enhanced mechanism of catalytic properties of metal carbide-carbon hybrid materials for energy-related devices.

Suggested Citation

  • Li, Xiaoyi & Huang, Jianfeng & Chu, Dewei & Cao, Liyun & Zhang, Xiao & Chen, Qian & Kajiyoshi, Koji & Liu, Yijun & Feng, Liangliang, 2025. "Catalytic C/Fe sites activation of Fe3C embedded in carbon nanotubes by the incorporation of VN for multifunctional electrocatalytic properties," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006875
    DOI: 10.1016/j.energy.2025.135045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225006875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jian Jiang & Fanfei Sun & Si Zhou & Wei Hu & Hao Zhang & Jinchao Dong & Zheng Jiang & Jijun Zhao & Jianfeng Li & Wensheng Yan & Mei Wang, 2018. "Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suiqin Li & Shibin Wang & Yuhang Wang & Jiahui He & Kai Li & James B. Gerken & Shannon S. Stahl & Xing Zhong & Jianguo Wang, 2025. "Synergistic enhancement of electrochemical alcohol oxidation by combining NiV-layered double hydroxide with an aminoxyl radical," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Wang, Wei & Li, Yingwei & Wang, Jia & Xiao, Rui & Liu, Kuanguan & Song, Xudong & Yu, Guangsuo & Ma, Baojun, 2025. "Interfacial electron redistribution through the Ru-N-Fe bond to stabilize high-valence metal sites for efficient electrocatalytic oxygen evolution," Renewable Energy, Elsevier, vol. 244(C).
    3. Wenhui Shi & Zezhou Li & Zhihao Gong & Zihui Liang & Hanwen Liu & Ye-Chuang Han & Huiting Niu & Bo Song & Xiaodong Chi & Jihan Zhou & Hua Wang & Bao Yu Xia & Yonggang Yao & Zhong-Qun Tian, 2023. "Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Wang, Jianmin & Zhao, Hongyu & Zhang, Hao & Huang, Ruoyu & Zheng, Shanshan & Li, Haijin & Cai, Jiajia & Li, Yongtao & Liu, Xiaofang & Deng, Xiaolong, 2025. "Activating lattice oxygen by sulfate anchoring via Fe3+ etching towards highly efficient and stable water/seawater oxidation," Renewable Energy, Elsevier, vol. 242(C).
    5. Zuyun He & Jun Zhang & Zhiheng Gong & Hang Lei & Deng Zhou & Nian Zhang & Wenjie Mai & Shijun Zhao & Yan Chen, 2022. "Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Yang, Haofeng & Wang, Xinjia & Wang, Jinzheng & Liu, Haolin & Jin, Hui & Zhang, Jiankai & Li, Guoneng & Tang, Yuanjun & Ye, Chao, 2025. "High-value utilization of agricultural waste: A study on the catalytic performance and deactivation characteristics of iron-nickel supported biochar-based catalysts in the catalytic cracking of toluen," Energy, Elsevier, vol. 323(C).
    7. Libo Wu & Wanheng Lu & Wei Li Ong & Andrew See Weng Wong & Yuanming Zhang & Tianxi Zhang & Kaiyang Zeng & Zhifeng Ren & Ghim Wei Ho, 2025. "Photothermal-promoted anion exchange membrane seawater electrolysis on a nickel-molybdenum-based catalyst," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    8. Yuzhen Chen & Qiuhong Li & Yuxing Lin & Jiao Liu & Jing Pan & Jingguo Hu & Xiaoyong Xu, 2024. "Boosting oxygen evolution reaction by FeNi hydroxide-organic framework electrocatalyst toward alkaline water electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Jingjing Cao & Huaxing Liang & Jie Yang & Zhiyang Zhu & Jin Deng & Xiaodong Li & Menachem Elimelech & Xinglin Lu, 2024. "Depolymerization mechanisms and closed-loop assessment in polyester waste recycling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Dan Wu & Longfei Hu & Xiaokang Liu & Tong Liu & Xiangyu Zhu & Qiquan Luo & Huijuan Zhang & Linlin Cao & Jinlong Yang & Zheng Jiang & Tao Yao, 2025. "Time-resolved spectroscopy uncovers deprotonation-induced reconstruction in oxygen-evolution NiFe-based (oxy)hydroxides," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    11. Tao Zhang & Hui-Feng Zhao & Zheng-Jie Chen & Qun Yang & Niu Gao & Li Li & Na Luo & Jian Zheng & Shi-Da Bao & Jing Peng & Xu Peng & Xin-Wang Liu & Hai-Bin Yu, 2025. "High-entropy alloy enables multi-path electron synergism and lattice oxygen activation for enhanced oxygen evolution activity," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.