IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544225000878.html
   My bibliography  Save this article

Improving flat heat pipe performance with lattice Boltzmann method: Evaluating flow and heat transfer in typical porous wick structures

Author

Listed:
  • Zhang, Hong
  • Xu, Bin
  • Fei, Yue
  • Chen, Xing-ni
  • Pei, Gang

Abstract

Flat heat pipes are essential for cooling electronic devices, with performance largely dependent on the wick structure. Reliable models for microgroove, sintered powder, and mesh wick structures were developed and validated to investigate their operational differences. The flow field was simulated using the pseudo-potential multiple relaxation time Lattice Boltzmann Method, while the gas-liquid phase change temperature field was solved using the finite difference method. Gas-liquid distribution and heat flux variations were studied under different superheating levels and evaporation surface wettability conditions. Results showed that the microgroove wick was more effective at triggering nucleate boiling and preventing film boiling, with its maximum heat flux density 1.7 times higher than the sintered powder wick and 1.9 times higher than the mesh wick. Enhancing surface hydrophilicity increased the maximum heat flux density by 9.6%. Under no-gravity conditions, heat transfer performance deteriorated significantly, with the condensation heat transfer coefficient under normal gravity at least five times higher than under no-gravity. Improvements such as optimizing wick spacing, enhancing hydrophilicity, and promoting gas-liquid flow to prevent heat transfer deterioration, particularly film boiling, were recommended. This work provides methods for comparing different heat pipe wick structures and offers insights for enhancing heat transfer capabilities in various scenarios.

Suggested Citation

  • Zhang, Hong & Xu, Bin & Fei, Yue & Chen, Xing-ni & Pei, Gang, 2025. "Improving flat heat pipe performance with lattice Boltzmann method: Evaluating flow and heat transfer in typical porous wick structures," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000878
    DOI: 10.1016/j.energy.2025.134445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Siyu & Liu, Yijia & Yang, Changming & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2023. "Visualization study of co-existing boiling and condensation heat transfer in a confined flat thermosyphon," Energy, Elsevier, vol. 285(C).
    2. Rui, Ziliang & Sun, Hong & Ma, Jie & Peng, Hao, 2023. "Experimental study and prediction on the thermal management performance of SDS aqueous solution based microchannel flow boiling system," Energy, Elsevier, vol. 282(C).
    3. Luo, Ding & Yang, Shuo & Yan, Yuying & Cao, Jin & Yang, Xuelin & Cao, Bingyang, 2024. "Performance improvement of the automotive thermoelectric generator system with a novel heat pipe configuration," Energy, Elsevier, vol. 306(C).
    4. Xu, Dawei & Yan, Tian & Xu, Xinhua & Wu, Wei & Zhu, Qiuyuan, 2024. "Study of the characteristics of the separated gravity heat pipe of a self-activated PCM wall system," Energy, Elsevier, vol. 298(C).
    5. Wang, Yacheng & Xia, Guodong & Li, Ran & Zhou, Wenbin & Yan, Ziheng, 2023. "Experimental investigation on photovoltaic cooling cycle with R141b/R245fa mixture under the electric field," Energy, Elsevier, vol. 269(C).
    6. Zhang, Weitao & Sun, Qichao & Zhou, Xin & Wu, Lianying & Hu, Yangdong, 2024. "Investigation on the thermal behavior of thermal management system for battery pack with heat pipe based on multiphysics coupling model," Energy, Elsevier, vol. 308(C).
    7. Yan, Min & Zhou, Ming & Li, Shugang & Lin, Haifei & Zhang, Kunyin & Zhang, Binbin & Shu, Chi-Min, 2021. "Numerical investigation on the influence of micropore structure characteristics on gas seepage in coal with lattice Boltzmann method," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    2. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    3. Golsanami, Naser & Jayasuriya, Madusanka N. & Yan, Weichao & Fernando, Shanilka G. & Liu, Xuefeng & Cui, Likai & Zhang, Xuepeng & Yasin, Qamar & Dong, Huaimin & Dong, Xu, 2022. "Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images," Energy, Elsevier, vol. 240(C).
    4. Wu, Jian & Gan, Yixiang & Shi, Zhang & Huang, Pengyu & Shen, Luming, 2023. "Pore-scale lattice Boltzmann simulation of CO2-CH4 displacement in shale matrix," Energy, Elsevier, vol. 278(PB).
    5. Zohora, Fatema-Tuj & Akter, Farzana & Haque, Md. Araful & Chowdhury, Nabil Mohammad & Haque, Mohammad Rejaul, 2024. "A novel pin finned structure-embedded microchannel heat sink: CFD-data driven MLP, MLR, and XGBR machine learning models for thermal and fluid flow prediction," Energy, Elsevier, vol. 307(C).
    6. Alamian, R. & Sawaf, M. & Stockinger, C. & Hadjadj, A. & Latt, J. & Shadloo, M.S., 2024. "Modeling soot filter regeneration process through surface-reactive flow in porous media using iterative lattice Boltzmann method," Energy, Elsevier, vol. 289(C).
    7. Wang, Yacheng & Xia, Guodong & Zhou, Wenbin & Zhao, Shuai & Zhao, Pengsheng, 2024. "Exergetic and environment assessment of linear fresnel concentrating photovoltaic systems integrated with a porous-wall mini-channel heat sink: Outdoor experimental tests," Energy, Elsevier, vol. 306(C).
    8. Pang, Mingkun & Zhang, Tianjun & Ji, Xiang & Wu, Jinyu & Song, Shuang, 2022. "Measurement of the coefficient of seepage characteristics in pore-crushed coal bodies around gas extraction boreholes," Energy, Elsevier, vol. 254(PA).
    9. Wang, Yacheng & Xia, Guodong & Zhou, Wenbin & An, Ce, 2025. "Performance investigation of linear Fresnel concentrating photovoltaic systems with mini-channel heat sink using R141b/R245fa mixture enhanced by electric field," Renewable Energy, Elsevier, vol. 238(C).
    10. Giuseppe Rausa & Maurizio Calabrese & Ramiro Velazquez & Carolina Del-Valle-Soto & Roberto De Fazio & Paolo Visconti, 2025. "Mechanical, Thermal, and Environmental Energy Harvesting Solutions in Fully Electric and Hybrid Vehicles: Innovative Approaches and Commercial Systems," Energies, MDPI, vol. 18(8), pages 1-54, April.
    11. Xu, Chao & Ma, Sibo & Wang, Kai & Yang, Gang & Zhou, Xin & Zhou, Aitao & Shu, Longyong, 2023. "Stress and permeability evolution of high-gassy coal seams for repeated mining," Energy, Elsevier, vol. 284(C).
    12. Ren, Junjie & Lei, Hao & Song, Jie, 2024. "An improved lattice Boltzmann model for variable-order time-fractional generalized Navier-Stokes equations with applications to permeability prediction," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    13. Li, Bingcheng & Yan, Hongye & He, Yuchen & Zhang, Zehan & Ling, Weihao & Zeng, Min & Wang, Yanfeng & Wang, Qiuwang, 2024. "Investigation of the insoluble impurities' impact on flow boiling heat transfer in aluminum microchannel heat exchangers," Energy, Elsevier, vol. 311(C).
    14. Taeho Choi & Junghwan Lee & Junsu Lee & Tae Young Kim, 2025. "Thermoelectric Energy Harvesting with a Stacked Configuration Using Porous Medium for Marine Applications," Energies, MDPI, vol. 18(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.