IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033741.html
   My bibliography  Save this article

Modeling soot filter regeneration process through surface-reactive flow in porous media using iterative lattice Boltzmann method

Author

Listed:
  • Alamian, R.
  • Sawaf, M.
  • Stockinger, C.
  • Hadjadj, A.
  • Latt, J.
  • Shadloo, M.S.

Abstract

In this research, we utilized the Lattice Boltzmann Method (LBM) to model surface chemical reactions and the heat transfer occurring between gas and solid materials within porous media. Our comprehensive approach involved a detailed analysis of fluid flow dynamics, heat transfer mechanisms, and the complex behavior of reactive species. To ensure precise modeling, we employed the thermal counter-slip method to represent heat transfer and carefully chose the wet node scheme to manage surface chemical reactions and species transfer. We placed significant emphasis on methodically explaining our selected models and providing practical guidelines for their implementation, as well as establishing initial and boundary conditions. An essential part of our study was investigating the influence of specific physical parameters governing these processes, including the Péclet, Damköhler, and Prandtl numbers. Consequently, we successfully identified various combustion regimes and elucidated the roles played by chemical reaction rates, diffusion, and convection processes within each of these regimes.

Suggested Citation

  • Alamian, R. & Sawaf, M. & Stockinger, C. & Hadjadj, A. & Latt, J. & Shadloo, M.S., 2024. "Modeling soot filter regeneration process through surface-reactive flow in porous media using iterative lattice Boltzmann method," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033741
    DOI: 10.1016/j.energy.2023.129980
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.