IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224033188.html
   My bibliography  Save this article

Co-optimization on ecological adaptive cruise control and energy management of automated hybrid electric vehicles

Author

Listed:
  • Zhang, Fengqi
  • Qi, Zhicheng
  • Xiao, Lehua
  • Coskun, Serdar
  • Xie, Shaobo
  • Liu, Yongtao
  • Li, Jiacheng
  • Song, Ziyou

Abstract

Electrified drive systems and eco-driving technologies play a crucial role in promoting energy conservation. Eco-driving for hybrid electric vehicles(HEVs) is an intricate problem involving intertwined speed planning and energy management. In this context, an ecological adaptive cruise control (eco-ACC) and powertrain energy management strategy considering Signal Phase Timing Message (SPaT) can enhance both performance and real-time implementation. Specifically, this study develops a novel co-optimization method based on Pontryagin's minimum principle (PMP) that combines car-following control rules with the SPaT for a parallel HEV. The methodology involves the following steps: firstly, the parallel HEV model is established; secondly, the safe following distance model is constructed and the car-following control rules are devised to ensure safe driving. Subsequently, the co-optimization method based on PMP is then presented to simultaneously optimize the eco-driving problem of an ego-vehicle by converting the inter-vehicle distance constraint of the lead-vehicle into the limitation of the speed of the ego-vehicle. Finally, simulations are conducted under different scenarios for both fused SPaT and non-fused SPaT strategy. The simulation results demonstrate a reduction in fuel consumption by 6.27 % and 5.69 % in two different scenarios, respectively, and a shorter driving time for the fused SPaT strategy compared to the non-fused SPaT strategy.

Suggested Citation

  • Zhang, Fengqi & Qi, Zhicheng & Xiao, Lehua & Coskun, Serdar & Xie, Shaobo & Liu, Yongtao & Li, Jiacheng & Song, Ziyou, 2025. "Co-optimization on ecological adaptive cruise control and energy management of automated hybrid electric vehicles," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224033188
    DOI: 10.1016/j.energy.2024.133542
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Tie-Qiao & Yi, Zhi-Yan & Zhang, Jian & Wang, Tao & Leng, Jun-Qiang, 2018. "A speed guidance strategy for multiple signalized intersections based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 399-409.
    2. Tang, Wenbin & Wang, Yaqian & Jiao, Xiaohong & Ren, Lina, 2023. "Hierarchical energy management strategy based on adaptive dynamic programming for hybrid electric vehicles in car-following scenarios," Energy, Elsevier, vol. 265(C).
    3. Pan, Chaofeng & Huang, Aibao & Wang, Jian & Chen, Liao & Liang, Jun & Zhou, Weiqi & Wang, Limei & Yang, Jufeng, 2022. "Energy-optimal adaptive cruise control strategy for electric vehicles based on model predictive control," Energy, Elsevier, vol. 241(C).
    4. Zhang, Fengqi & Xiao, Lehua & Coskun, Serdar & Pang, Hui & Xie, Shaobo & Liu, Kailong & Cui, Yahui, 2023. "Comparative study of energy management in parallel hybrid electric vehicles considering battery ageing," Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Chengcheng & Zhao, Wanzhong & Wang, Chunyan & Luan, Zhongkai, 2023. "An energy management strategy of deep reinforcement learning based on multi-agent architecture under self-generating conditions," Energy, Elsevier, vol. 283(C).
    2. Chuanwei Zhang & Xibo Xue & Peilin Qin & Lingling Dong, 2023. "Research on a Speed Guidance Strategy for Mine Vehicles in Three-Fork Roadways Based on Vehicle–Road Coordination," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    3. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    4. Chen, Dong & Zhao, Min & Sun, Dihua & Zheng, Linjiang & Jin, Shuang & Chen, Jin, 2020. "Robust H∞ control of cooperative driving system with external disturbances and communication delays in the vicinity of traffic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    5. Zhou, Tong & Chen, Dong & Zheng, Linjiang & Liu, Weining & He, Yuchu & Liu, Zhongcheng, 2018. "Feedback-based control for coupled map car-following model with time delays on basis of linear discrete-time system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 174-185.
    6. Xiao Xiao & Yunlong Zhang & Xiubin Bruce Wang & Shu Yang & Tianyi Chen, 2021. "Hierarchical Longitudinal Control for Connected and Automated Vehicles in Mixed Traffic on a Signalized Arterial," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    7. Simin Hesami & Majid Vafaeipour & Cedric De Cauwer & Evy Rombaut & Lieselot Vanhaverbeke & Thierry Coosemans, 2023. "Dynamic Pro-Active Eco-Driving Control Framework for Energy-Efficient Autonomous Electric Mobility," Energies, MDPI, vol. 16(18), pages 1-19, September.
    8. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    9. Yang, Qiaoli & He, Yongzhen, 2022. "Right-turn-on-red queueing process at signalized intersections with a short right-turn lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    10. Tang, Wenbin & Jiao, Xiaohong & Zhang, Yahui, 2025. "Hierarchical energy management control for connected hybrid electric vehicles in uncertain traffic scenarios," Energy, Elsevier, vol. 315(C).
    11. Li, Jianqi & Yang, Hang & Cheng, Rongjun & Zheng, Pengjun & Wu, Bing, 2024. "A dynamic temporal and spatial speed control strategy for partially connected automated vehicles at a signalized arterial," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    12. Yang, Qiaoli & Shi, Zhongke & Tang, Min-an & Gao, Fengyang & Yu, Shaowei, 2019. "Modeling the permissive-only left-turn queue at signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 315-325.
    13. Wen Huan Ai & Ming Ming Wang & Da Wei Liu, 2023. "Analysis of macroscopic traffic flow model considering throttle dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-18, June.
    14. Sun, Yutong & Liu, Hong, 2021. "Crowd evacuation simulation method combining the density field and social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    15. Li, Shihao & Cheng, Rongjun & Ge, Hongxia, 2020. "An improved car-following model considering electronic throttle dynamics and delayed velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    16. Zou, Yunge & Yang, Yalian & Zhang, Yuxin & Liu, Changdong, 2024. "Computationally efficient assessment of fuel economy of multi-modes and multi-gears hybrid electric vehicles: A hyper rapid dynamic programming approach," Energy, Elsevier, vol. 313(C).
    17. Zhang, Hao & Lei, Nuo & Liu, Shang & Fan, Qinhao & Wang, Zhi, 2023. "Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    18. Doll, Alisa & Abbasi, Mohammad & Zhao, Ming & Zhou, Xuesong (Simon), 2024. "Oversaturated intersections: A real-world assessment of polynomial fluid queue models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 651(C).
    19. Siqi An & Yuantao Gan & Xu Peng & Songyi Dian, 2024. "Charging Optimization with an Improved Dynamic Programming for Electro-Gasoline Hybrid Powered Compound-Wing Unmanned Aerial Vehicle," Energies, MDPI, vol. 18(1), pages 1-18, December.
    20. Xin, Qi & Fu, Rui & Ukkusuri, Satish V. & Yu, Shaowei & Jiang, Rui, 2021. "Modeling and impact analysis of connected vehicle merging accounting for mainline random length tight-platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224033188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.