IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224038611.html
   My bibliography  Save this article

The energy management strategy of two-by-one combined cycle gas turbine based on dynamic programming

Author

Listed:
  • Lu, Nianci
  • Pan, Lei
  • Cui, Guomin
  • Pedersen, Simon
  • Shivaie, Mojtaba
  • Arabkoohsar, Ahmad

Abstract

The complexity and nonlinearity of components in large-scale thermal facilities have resulted in a lack of recognized energy management models, and simple rule-based energy management strategies are still the main approach, which reduces their operating efficiency. In this study, a dynamic programming (DP) method for globally optimal power distribution and operation mode decision for two-by-one combined cycle gas turbine is proposed. First, the energy management model of system is established. Then the drum pressure of the heat recovery steam generator, which indicates the thermal energy storage of the system, is chosen as the state variable, while the control variables are the gas turbine power, turbine power and operation mode. In addition, the system response time is considered to re-evaluated the mode switch command. The simulation results show that the DP optimizes the thermal storage management, which allows the gas turbine to run in the high-efficiency operating range for a longer time. The DP-based strategy saves 6.25 %, 5.89 %, and 4.92 % of fuel at initial drum pressure 8 MPa, 9 MPa, and 10 MPa, respectively, compared to the rule-based strategy. The results of this study can be used as a benchmark to evaluate online energy management strategies in future work.

Suggested Citation

  • Lu, Nianci & Pan, Lei & Cui, Guomin & Pedersen, Simon & Shivaie, Mojtaba & Arabkoohsar, Ahmad, 2024. "The energy management strategy of two-by-one combined cycle gas turbine based on dynamic programming," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038611
    DOI: 10.1016/j.energy.2024.134083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224038611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Yitao & Zhang, Yuanjian & Li, Guang & Shen, Jiangwei & Chen, Zheng & Liu, Yonggang, 2020. "A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks," Energy, Elsevier, vol. 208(C).
    2. Tian, He & Li, Shengbo Eben & Wang, Xu & Huang, Yong & Tian, Guangyu, 2018. "Data-driven hierarchical control for online energy management of plug-in hybrid electric city bus," Energy, Elsevier, vol. 142(C), pages 55-67.
    3. Lei, Zhenzhen & Qin, Datong & Hou, Liliang & Peng, Jingyu & Liu, Yonggang & Chen, Zheng, 2020. "An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information," Energy, Elsevier, vol. 190(C).
    4. Ettihir, K. & Boulon, L. & Agbossou, K., 2016. "Optimization-based energy management strategy for a fuel cell/battery hybrid power system," Applied Energy, Elsevier, vol. 163(C), pages 142-153.
    5. Lu, Nianci & Pan, Lei & Pedersen, Simon & Arabkoohsar, Ahmad, 2023. "A two-dimensional design and synthesis method for coordinated control of flexible-operational combined cycle of gas turbine," Energy, Elsevier, vol. 284(C).
    6. van der Meer, Dennis & Wang, Guang Chao & Munkhammar, Joakim, 2021. "An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic," Applied Energy, Elsevier, vol. 283(C).
    7. Ehsan, M. Monjurul & Duniam, Sam & Li, Jishun & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2019. "Effect of cooling system design on the performance of the recompression CO2 cycle for concentrated solar power application," Energy, Elsevier, vol. 180(C), pages 480-494.
    8. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    9. Felten, Björn, 2020. "An integrated model of coupled heat and power sectors for large-scale energy system analyses," Applied Energy, Elsevier, vol. 266(C).
    10. Xueqin Lü, & Wu, Yinbo & Lian, Jie & Zhang, Yangyang, 2021. "Energy management and optimization of PEMFC/battery mobile robot based on hybrid rule strategy and AMPSO," Renewable Energy, Elsevier, vol. 171(C), pages 881-901.
    11. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
    12. Yang, Chao & Wang, Muyao & Wang, Weida & Pu, Zesong & Ma, Mingyue, 2021. "An efficient vehicle-following predictive energy management strategy for PHEV based on improved sequential quadratic programming algorithm," Energy, Elsevier, vol. 219(C).
    13. Zhang, LiPeng & Liu, Wei & Qi, BingNan, 2020. "Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction," Energy, Elsevier, vol. 206(C).
    14. Zhong, Xiaoqing & Zhong, Weifeng & Liu, Yi & Yang, Chao & Xie, Shengli, 2022. "Optimal energy management for multi-energy multi-microgrid networks considering carbon emission limitations," Energy, Elsevier, vol. 246(C).
    15. Li, Qi & Wang, Tianhong & Li, Shihan & Chen, Weirong & Liu, Hong & Breaz, Elena & Gao, Fei, 2021. "Online extremum seeking-based optimized energy management strategy for hybrid electric tram considering fuel cell degradation," Applied Energy, Elsevier, vol. 285(C).
    16. Zhang, Bo & Zhang, Jiangyan & Xu, Fuguo & Shen, Tielong, 2020. "Optimal control of power-split hybrid electric powertrains with minimization of energy consumption," Applied Energy, Elsevier, vol. 266(C).
    17. Wang, Peiguang & Zhang, Zhaoyan & Fu, Lei & Ran, Ning, 2021. "Optimal design of home energy management strategy based on refined load model," Energy, Elsevier, vol. 218(C).
    18. Wang, Zefeng & Han, Wei & Zhang, Na & Su, Bosheng & Gan, Zhongxue & Jin, Hongguang, 2018. "Effects of different alternative control methods for gas turbine on the off-design performance of a trigeneration system," Applied Energy, Elsevier, vol. 215(C), pages 227-236.
    19. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    20. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    21. Liu, Ji-Zhen & Yan, Shu & Zeng, De-Liang & Hu, Yong & Lv, You, 2015. "A dynamic model used for controller design of a coal fired once-through boiler-turbine unit," Energy, Elsevier, vol. 93(P2), pages 2069-2078.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Zhigen & Jia, Yuan & Wang, Wanqiong & Chen, Zheng & Outbib, Rachid, 2022. "Co-optimization of speed planning and energy management for intelligent fuel cell hybrid vehicle considering complex traffic conditions," Energy, Elsevier, vol. 247(C).
    2. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    4. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    5. Zhou, Yang & Chen, Bo & Xu, Xianfeng & Zhang, Zhen & Ravey, Alexandre & Péra, Marie-Cécile & Ma, Ruiqing, 2024. "Data-driven cost-optimal energy management of postal-delivery fuel cell electric vehicle with intelligent dual-loop battery state-of-charge planner," Energy, Elsevier, vol. 290(C).
    6. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    7. Kong, Yan & Xu, Nan & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2021. "Acquisition of full-factor trip information for global optimization energy management in multi-energy source vehicles and the measure of the amount of information to be transmitted," Energy, Elsevier, vol. 236(C).
    8. Wang, Zhiguo & Wei, Hongqian & Xi, Yecheng & Xiao, Gongwei, 2024. "Data-driven energy utilization for plug-in hybrid electric bus with driving patten application and battery health considerations," Energy, Elsevier, vol. 310(C).
    9. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
    10. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    12. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    13. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    15. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    16. Changqing Du & Shiyang Huang & Yuyao Jiang & Dongmei Wu & Yang Li, 2022. "Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 15(12), pages 1-25, June.
    17. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    18. Wang, Weida & Guo, Xinghua & Yang, Chao & Zhang, Yuanbo & Zhao, Yulong & Huang, Denggao & Xiang, Changle, 2022. "A multi-objective optimization energy management strategy for power split HEV based on velocity prediction," Energy, Elsevier, vol. 238(PA).
    19. Chen, Jiayu & Kuboyama, Tatsuya & Shen, Tielong, 2025. "Collective behavior information-based design approach to energy management strategy for large-scale population of HEVs," Applied Energy, Elsevier, vol. 377(PC).
    20. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.