IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics036054422403651x.html
   My bibliography  Save this article

Optimised configuration of multi-energy systems considering the adjusting capacity of communication base stations and risk of network congestion

Author

Listed:
  • Yang, Dongfeng
  • Wang, Xi
  • Sun, Yong
  • Yang, Jingying
  • Liu, Xiaojun
  • Jiang, Chao

Abstract

The high percentage of renewable energy sources presents unprecedented challenges to the flexibility of power systems, and planning for the system's flexibility resources has become a necessary research area. Thus, this study constructs a flexibility quota mechanism and a two-stage model for the optimal configuration of multi-energy system coupling equipment to satisfy the growing demand for flexibility in city-level electricity-gas-heat-storage coupling systems. First, it examines the relationship between supply and demand for system flexibility, leading to the design of a flexibility quota mechanism. Subsequently, the power supply method for communication base stations shifts from direct networking to a hydrogen fuel cell supply. This flexibility quota mechanism encourages communication operators to actively engage in flexibility quota trading. Simultaneously, the safety constraints of heterogeneous energy-flow subsystems are considered while conducting comprehensive capacity planning for the coupling equipment of a multi-energy system. Finally, an optimisation strategy is proposed under the established capacity planning scheme for determining the siting and capacity of energy storage plants to address the potential transmission blockage risk in the power network. The case study employs the IEEE 14-bus power grid, a 7-node gas network, and an 8-node heat network test system to evaluate the optimal configuration of a city-level multi-energy coupled system model. The analysis considers four typical days to achieve this optimal configuration. By implementing a flexibility quota mechanism, the system's flexibility margin is increased by 7500 MW. Additionally, the proposed energy storage siting and capacity determination method reduces the risk of transmission congestion by 5–10 % compared to traditional methods. This approach also results in a reduction of the total cost by ¥2.87 million. Moreover, the integration of communication base station power supply modifications and participation in market trading further enhances system flexibility, increasing it by an additional 10,563 MW.

Suggested Citation

  • Yang, Dongfeng & Wang, Xi & Sun, Yong & Yang, Jingying & Liu, Xiaojun & Jiang, Chao, 2024. "Optimised configuration of multi-energy systems considering the adjusting capacity of communication base stations and risk of network congestion," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403651x
    DOI: 10.1016/j.energy.2024.133873
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403651X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Gao, Mingfei & Han, Zhonghe & Zhang, Ce & Li, Peng & Wu, Di & Li, Peng, 2023. "Optimal configuration for regional integrated energy systems with multi-element hybrid energy storage," Energy, Elsevier, vol. 277(C).
    3. Yin, Xin & Chen, Haoyong & Liang, Zipeng & Zhu, Yanjin, 2023. "A Flexibility-oriented robust transmission expansion planning approach under high renewable energy resource penetration," Applied Energy, Elsevier, vol. 351(C).
    4. Sun, Yan & Li, Hong-Wei & Wang, Di & Du, Chang-He, 2024. "A novel zero carbon emission system based on the complementary utilization of solar energy and hydrogen," Applied Energy, Elsevier, vol. 356(C).
    5. Chen, Maozhi & Lu, Hao & Chang, Xiqiang & Liao, Haiyan, 2023. "An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load," Energy, Elsevier, vol. 273(C).
    6. He, Hongjie & Du, Ershun & Zhang, Ning & Kang, Chongqing & Wang, Xuebin, 2021. "Enhancing the power grid flexibility with battery energy storage transportation and transmission switching," Applied Energy, Elsevier, vol. 290(C).
    7. Wu, Qiong & Chen, Min & Ren, Hongbo & Li, Qifen & Gao, Weijun, 2024. "Collaborative modeling and optimization of energy hubs and multi-energy network considering hydrogen energy," Renewable Energy, Elsevier, vol. 227(C).
    8. Liu, Shan & Yan, Jie & Yan, Yamin & Zhang, Haoran & Zhang, Jing & Liu, Yongqian & Han, Shuang, 2024. "Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate," Applied Energy, Elsevier, vol. 357(C).
    9. Schwabeneder, Daniel & Fleischhacker, Andreas & Lettner, Georg & Auer, Hans, 2019. "Assessing the impact of load-shifting restrictions on profitability of load flexibilities," Applied Energy, Elsevier, vol. 255(C).
    10. Xiang, Yue & Cai, Hanhu & Gu, Chenghong & Shen, Xiaodong, 2020. "Cost-benefit analysis of integrated energy system planning considering demand response," Energy, Elsevier, vol. 192(C).
    11. Huang, Mengdi & Chang, Jianxia & Guo, Aijun & Zhao, Mingzhe & Ye, Xiangmin & Lei, Kaixuan & Peng, Zhiwen & Wang, Yimin, 2023. "Cascade hydropower stations optimal dispatch considering flexible margin in renewable energy power system," Energy, Elsevier, vol. 285(C).
    12. Ju, Liwei & Lv, ShuoShuo & Zhang, Zheyu & Li, Gen & Gan, Wei & Fang, Jiangpeng, 2024. "Data-driven two-stage robust optimization dispatching model and benefit allocation strategy for a novel virtual power plant considering carbon-green certificate equivalence conversion mechanism," Applied Energy, Elsevier, vol. 362(C).
    13. Saarinen, Linn & Tokimatsu, Koji, 2021. "Flexibility metrics for analysis of power system transition - A case study of Japan and Sweden," Renewable Energy, Elsevier, vol. 170(C), pages 764-772.
    14. Qiao, Yiyang & Hu, Fan & Xiong, Wen & Guo, Zihao & Zhou, Xiaoguang & Li, Yajun, 2023. "Multi-objective optimization of integrated energy system considering installation configuration," Energy, Elsevier, vol. 263(PC).
    15. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    16. Liu, Wenxia & Huang, Yuchen & Li, Zhengzhou & Yang, Yue & Yi, Fang, 2020. "Optimal allocation for coupling device in an integrated energy system considering complex uncertainties of demand response," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Meihui & Xu, Zhenjiang & Zhu, Hongyu & Hwang Goh, Hui & Agustiono Kurniawan, Tonni & Liu, Tianhao & Zhang, Dongdong, 2024. "Integrated demand response modeling and optimization technologies supporting energy internet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    2. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Liu, Zhi-Feng & Luo, Xing-Fu & Chen, Xiao-Rui & Huang, Ya-He & Liu, You-Yuan & Tang, Yu & Kang, Qing & Guo, Liang, 2024. "An innovative bi-level scheduling model with hydrogen-thermal-electricity co-supply and dynamic carbon capture strategies for regional integrated energy systems considering hybrid games," Renewable Energy, Elsevier, vol. 237(PB).
    4. Zhang, Xiaofeng & Liu, Yuting & Zhan, Yu & Yan, Renshi & Mei, Jin & Fu, Ang & Jiao, Fan & Zeng, Rong, 2024. "Multi-scenario optimization and performance evaluation of integrated energy system considering co-scheduling of EVs and stationary energy storage," Renewable Energy, Elsevier, vol. 237(PD).
    5. Elkholy, M.H. & Senjyu, Tomonobu & Elymany, Mahmoud & Gamil, Mahmoud M. & Talaat, M. & Masrur, Hasan & Ueda, Soichiro & Lotfy, Mohammed Elsayed, 2024. "Optimal resilient operation and sustainable power management within an autonomous residential microgrid using African vultures optimization algorithm," Renewable Energy, Elsevier, vol. 224(C).
    6. Pang, Simian & Zheng, Zixuan & Xiao, Xianyong & Huang, Chunjun & Zhang, Shu & Li, Jie & Zong, Yi & You, Shi, 2022. "Collaborative power tracking method of diversified thermal loads for optimal demand response: A MILP-Based decomposition algorithm," Applied Energy, Elsevier, vol. 327(C).
    7. Maślak, Grzegorz & Orłowski, Przemysław, 2024. "Operational optimisation of a microgrid using non-stationary hybrid switched model predictive control with virtual storage-based demand management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    8. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    9. Mimica, Marko & Dominković, Dominik Franjo & Capuder, Tomislav & Krajačić, Goran, 2021. "On the value and potential of demand response in the smart island archipelago," Renewable Energy, Elsevier, vol. 176(C), pages 153-168.
    10. Chen, Xiaoyuan & Chen, Yu & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Pang, Zhou & Shen, Boyang, 2021. "Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system," Applied Energy, Elsevier, vol. 300(C).
    11. Bo wang & Nana Deng & Wenhui Zhao & Zhaohua Wang, 2022. "Residential power demand side management optimization based on fine-grained mixed frequency data," Annals of Operations Research, Springer, vol. 316(1), pages 603-622, September.
    12. Hua Pan & Qunli Wu & Huiling Guo & Jiayi Bai, 2024. "Low-Carbon Optimization Scheduling of Integrated Energy Systems Based on Bilateral Demand Response and Two-Level Stackelberg Game," Energies, MDPI, vol. 17(21), pages 1-26, November.
    13. Wu, Min & Xu, Jiazhu & Shi, Zhenglu, 2023. "Low carbon economic dispatch of integrated energy system considering extended electric heating demand response," Energy, Elsevier, vol. 278(PA).
    14. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. He, Shuaijia & Gao, Hongjun & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response," Energy, Elsevier, vol. 213(C).
    16. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2022. "Deep integration planning of sustainable energies in district energy system and distributed energy station," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    18. Liu, Shuaidong & Han, Song & Tian, Junling & Rong, Na, 2024. "A multi-objective optimization scheduling approach of integrated energy system considering the exergy efficiency using the variable step-size approximation method," Energy, Elsevier, vol. 311(C).
    19. Du, Sipeng & Wu, Di & Dai, Zhong & Li, Guiqiang & Lahaxibai, Shala, 2023. "Regional collaborative planning equipped with shared energy storage under multi-time scale rolling optimisation method," Energy, Elsevier, vol. 277(C).
    20. Sun, Jingqi & Ruze, Nuermaimaiti & Zhang, Jianjun & Shi, Jing & Shen, Boyang, 2021. "Capacity planning and optimization for integrated energy system in industrial park considering environmental externalities," Renewable Energy, Elsevier, vol. 167(C), pages 56-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403651x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.