IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224036454.html
   My bibliography  Save this article

Design and implementation of a hydraulic balancing system based on low-power ZigBee Ad-Hoc network electric household control valves

Author

Listed:
  • Zhao, Senyao
  • Yuan, Yonggong
  • Mei, Ning
  • Yuan, Han

Abstract

Accelerating global urbanization highlights the need for sustainable smart cities. Centralized heating systems, vital to intelligent heating networks, enhances energy efficiency and reduces carbon emissions. Hydraulic imbalance, however, compromises efficiency and comfort, with traditional remedies challenging in older districts. This study introduces an electric household control valve and a hydraulic balance control system based on the ZigBee protocol The system utilizes ZigBee's Ad-Hoc network features to monitor residential heating return water temperatures, achieving wireless monitoring of the heating system. The results demonstrate that ZigBee's mesh topology and media access control significantly improve system robustness Utilizing the Time Protocol Synchronization Node time synchronization mechanism, the time synchronization error rate is only 0.76 ‰, and the node current is reduced from 37.33 mA to 35.2uA, significantly lowering the system's power consumption and ensuring long-term stable operation. By adjusting the return water temperature, the maximum temperature differential was reduced from 5.9 °C to 1.6 °C, a reduction of about 73 %. The temperature difference between households was significantly reduced, effectively improving the hydraulic imbalance issue in old residential areas, ensuring an even temperature distribution. This study provides a cost-effective low-carbon solution to address the challenges of urban heating, promote the development of intelligent heating networks.

Suggested Citation

  • Zhao, Senyao & Yuan, Yonggong & Mei, Ning & Yuan, Han, 2024. "Design and implementation of a hydraulic balancing system based on low-power ZigBee Ad-Hoc network electric household control valves," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036454
    DOI: 10.1016/j.energy.2024.133867
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224036454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Nagy, Zoltán & Rossi, Dino & Hersberger, Christian & Irigoyen, Silvia Domingo & Miller, Clayton & Schlueter, Arno, 2014. "Balancing envelope and heating system parameters for zero emissions retrofit using building sensor data," Applied Energy, Elsevier, vol. 131(C), pages 56-66.
    2. Chen, Kang & Zhu, Xu & Anduv, Burkay & Jin, Xinqiao & Du, Zhimin, 2022. "Digital twins model and its updating method for heating, ventilation and air conditioning system using broad learning system algorithm," Energy, Elsevier, vol. 251(C).
    3. Asma Shuhail AlShuhail & Surbhi Bhatia & Ankit Kumar & Bharat Bhushan, 2022. "Zigbee-Based Low Power Consumption Wearables Device for Voice Data Transmission," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    4. Sun, Chunhua & Yuan, Lingyu & Chen, Yun & Cao, Shanshan & Xia, Guoqiang & Qi, Chengying & Wu, Xiangdong, 2023. "An intelligent control and regulation strategy aiming at building level heating balance in district heating system," Energy, Elsevier, vol. 278(PB).
    5. Liu, Dong-xi & Lei, Hai-Yan & Li, Jia-Shu & Dai, Chuan-shan & Xue, Rui & Liu, Xin, 2024. "Optimization of a district heating system coupled with a deep open-loop geothermal well and heat pumps," Renewable Energy, Elsevier, vol. 223(C).
    6. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    7. Hiris, Daniel P. & Pop, Octavian G. & Dobrovicescu, Alexandru & Dudescu, Mircea C. & Balan, Mugur C., 2023. "Modelling of solar assisted district heating system with seasonal storage tank by two mathematical methods and with two climatic data as input," Energy, Elsevier, vol. 284(C).
    8. Che, Zichang & Sun, Jingchao & Na, Hongming & Yuan, Yuxing & Qiu, Ziyang & Du, Tao, 2023. "A novel method for intelligent heating: On-demand optimized regulation of hydraulic balance for secondary networks," Energy, Elsevier, vol. 282(C).
    9. Liu, Guoqiang & Zhou, Xuan & Yan, Junwei & Yan, Gang, 2021. "A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Chunhua & Yan, Hao & Yuan, Lingyu & Cao, Shanshan & Ma, Weichi & Suo, Chenyu & Qi, Chengying & Wu, Xiangdong, 2024. "A refined classification method of heat customers to improve inter-household thermal balance intelligent control and regulation," Energy, Elsevier, vol. 304(C).
    2. Yang, Junhong & Zhu, Junda & Peng, Mengbo & Zhao, Tong & Shi, Xinyu, 2024. "A novel perspective of addressing the hydraulic dynamic imbalance in district heating network: The application of nonlinear programming," Energy, Elsevier, vol. 312(C).
    3. Guo, Chengke & Zhang, Ji & Yuan, Han & Yuan, Yonggong & Wang, Haifeng & Mei, Ning, 2024. "Informer-based model predictive control framework considering group controlled hydraulic balance model to improve the precision of client heat load control in district heating system," Applied Energy, Elsevier, vol. 373(C).
    4. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    5. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    6. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    7. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    8. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2023. "Potential for supply temperature reduction of existing district heating substations," Energy, Elsevier, vol. 285(C).
    9. Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
    10. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
    11. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    12. Davine N. G. Janssen & Eunice Pereira Ramos & Vincent Linderhof & Nico Polman & Chrysi Laspidou & Dennis Fokkinga & Duarte de Mesquita e Sousa, 2020. "The Climate, Land, Energy, Water and Food Nexus Challenge in a Land Scarce Country: Innovations in the Netherlands," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    13. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    14. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    15. Zhang, Fan & Bales, Chris & Fleyeh, Hasan, 2021. "Night setback identification of district heat substations using bidirectional long short term memory with attention mechanism," Energy, Elsevier, vol. 224(C).
    16. Jiang, X.S. & Jing, Z.X. & Li, Y.Z. & Wu, Q.H. & Tang, W.H., 2014. "Modelling and operation optimization of an integrated energy based direct district water-heating system," Energy, Elsevier, vol. 64(C), pages 375-388.
    17. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    18. Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
    19. Rezaie, Behnaz & Reddy, Bale V. & Rosen, Marc A., 2015. "Exergy analysis of thermal energy storage in a district energy application," Renewable Energy, Elsevier, vol. 74(C), pages 848-854.
    20. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2015. "Multi-objective operation management of a multi-carrier energy system," Energy, Elsevier, vol. 88(C), pages 430-442.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.