IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224034030.html
   My bibliography  Save this article

Optimal expansion planning of a self-healing distribution system considering resiliency investment alternatives

Author

Listed:
  • Mohammadi Pour, Ahmad
  • Nazar, Mehrdad Setayesh
  • Shafie-khah, Miadreza
  • Vale, Zita

Abstract

This paper proposes a three-stage optimization framework for the expansion planning of a self-healing distribution system that determines the optimal characteristics of distributed generation, energy storage systems, electric vehicle charging stations, and sectionalizing switches for the planning horizon. The main contribution of this model is that the proposed model considers the resilient investment alternatives in the expansion planning exercise to reduce the system's vulnerability against external shocks. The mobile energy storage system commitment in contingent conditions is another contribution of this paper. In the first stage, the optimal location, capacity, and time of installation of the electricity facilities are calculated. Then, the optimal allocation of sectionalizing switches is performed in the second stage. The third stage consists of three levels. In the first and second levels, the optimal normal and contingent operational scheduling are determined, respectively. The system is sectionalized into multi-microgrid systems in contingent conditions. Finally, the resilient investment alternatives for the designed system are evaluated. The proposed model utilizes a self-healing index and resilient expansion planning index to assess the impacts of resilient investment alternatives on the operational scheduling conditions. The proposed model was evaluated using the IEEE 123-bus system. The proposed method reduced the estimated average value of the worst-case energy not supplied by 50.52 % for the 5th year of the planning horizon concerning the no-resiliency investment case. Further, the proposed resilience investment method increased the self-healing index by about 9.32 % concerning the no-resiliency investment case.

Suggested Citation

  • Mohammadi Pour, Ahmad & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Vale, Zita, 2024. "Optimal expansion planning of a self-healing distribution system considering resiliency investment alternatives," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034030
    DOI: 10.1016/j.energy.2024.133625
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zakernezhad, Hamid & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Multi-level optimization framework for resilient distribution system expansion planning with distributed energy resources," Energy, Elsevier, vol. 214(C).
    2. Rahimi Sadegh, Ainollah & Setayesh Nazar, Mehrdad & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal resilient allocation of mobile energy storages considering coordinated microgrids biddings," Applied Energy, Elsevier, vol. 328(C).
    3. Moradijoz, M. & Moghaddam, M. Parsa & Haghifam, M.R., 2018. "A flexible active distribution system expansion planning model: A risk-based approach," Energy, Elsevier, vol. 145(C), pages 442-457.
    4. Huang, Nantian & Zhao, Xuanyuan & Guo, Yu & Cai, Guowei & Wang, Rijun, 2023. "Distribution network expansion planning considering a distributed hydrogen-thermal storage system based on photovoltaic development of the Whole County of China," Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habiba Drias & Lydia Sonia Bendimerad & Yassine Drias, 2022. "A Three-Phase Artificial Orcas Algorithm for Continuous and Discrete Problems," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 13(1), pages 1-20, January.
    2. Zhang, Dong & Shafiullah, G.M. & Das, Choton K. & Wong, Kok Wai, 2025. "Optimal allocation of battery energy storage systems to improve system reliability and voltage and frequency stability in weak grids," Applied Energy, Elsevier, vol. 377(PB).
    3. Dong Zhang & GM Shafiullah & Choton Kanti Das & Kok Wai Wong, 2023. "Optimal Allocation of Battery Energy Storage Systems to Enhance System Performance and Reliability in Unbalanced Distribution Networks," Energies, MDPI, vol. 16(20), pages 1-35, October.
    4. Shen, Lu & Dou, Xiaobo & Long, Huan & Li, Chen & Chen, Kang & Zhou, Ji, 2021. "A collaborative voltage optimization utilizing flexibility of community heating systems for high PV penetration," Energy, Elsevier, vol. 232(C).
    5. Zhong, Haiwang & Zhang, Guanglun & Tan, Zhenfei & Ruan, Guangchun & Wang, Xuan, 2022. "Hierarchical collaborative expansion planning for transmission and distribution networks considering transmission cost allocation," Applied Energy, Elsevier, vol. 307(C).
    6. Amor Fezzani & Mawloud Guermoui & Abdellah Kouzou & Ahmed Hafaifa & Layachi Zaghba & Said Drid & Jose Rodriguez & Mohamed Abdelrahem, 2023. "Performances Analysis of Three Grid-Tied Large-Scale Solar PV Plants in Varied Climatic Conditions: A Case Study in Algeria," Sustainability, MDPI, vol. 15(19), pages 1-23, September.
    7. Ayrir, Wiam & Helmi, Ahmed M. & Ramadan, Haitham S., 2024. "Interconnected microgrids optimization via reconfiguration-based modular approach," Applied Energy, Elsevier, vol. 375(C).
    8. Zhang, Xi & Dong, Zihang & Huangfu, Fenyu & Ye, Yujian & Strbac, Goran & Kang, Chongqing, 2024. "Strategic dispatch of electric buses for resilience enhancement of urban energy systems," Applied Energy, Elsevier, vol. 361(C).
    9. Rui Wang & Haoran Ji & Peng Li & Hao Yu & Jinli Zhao & Liang Zhao & Yue Zhou & Jianzhong Wu & Linquan Bai & Jinyue Yan & Chengshan Wang, 2024. "Multi-resource dynamic coordinated planning of flexible distribution network," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Mohammad Hemmat Esfe & Vahid Vaisi & Seyed Hosseini Tamrabad & Hossein Hatami & Davood Toghraie & Roozbeh Moshfeghi & Saeed Esfandeh, 2024. "A comprehensive review of the effective environmental parameters on the efficiency and suitable site selection for installing solar based water desalination systems in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28893-28921, November.
    12. Shen, Yueqing & Qian, Tong & Li, Weiwei & Zhao, Wei & Tang, Wenhu & Chen, Xingyu & Yu, Zeyuan, 2023. "Mobile energy storage systems with spatial–temporal flexibility for post-disaster recovery of power distribution systems: A bilevel optimization approach," Energy, Elsevier, vol. 282(C).
    13. Zhang, XiaoWei & Yu, Xiaoping & Ye, Xinping & Pirouzi, Sasan, 2023. "Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method," Energy, Elsevier, vol. 278(PB).
    14. Ahmad Alzahrani & Ghulam Hafeez & Sajjad Ali & Sadia Murawwat & Muhammad Iftikhar Khan & Khalid Rehman & Azher M. Abed, 2023. "Multi-Objective Energy Optimization with Load and Distributed Energy Source Scheduling in the Smart Power Grid," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    15. Nickyar Ghadirinejad & Fredric Ottermo & Raheleh Nowzari & Naif Alsaadi & Mazyar Ghadiri Nejad, 2023. "Optimizing a Green and Sustainable Off-Grid Energy-System Design: A Real Case," Sustainability, MDPI, vol. 15(17), pages 1-16, August.
    16. S M Mezbahul Amin & Abul Hasnat & Nazia Hossain, 2023. "Designing and Analysing a PV/Battery System via New Resilience Indicators," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    17. Nazar, Mehrdad Setayesh & Jafarpour, Pourya & Shafie-khah, Miadreza & Catalão, João P.S., 2024. "Optimal planning of self-healing multi-carriers energy systems considering integration of smart buildings and parking lots energy resources," Energy, Elsevier, vol. 286(C).
    18. Moradijoz, Mahnaz & Moradijoz, Saeed & Moghaddam, Mohsen Parsa & Haghifam, Mahmoud-Reza, 2020. "Flexibility enhancement in active distribution networks through a risk-based optimal placement of sectionalizing switches," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    19. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    20. Brandt, Adam R. & Teichgraeber, Holger & Kang, Charles A. & Barnhart, Charles J. & Carbajales-Dale, Michael A. & Sgouridis, Sgouris, 2021. "Blow wind blow: Capital deployment in variable energy systems," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.