IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics0360544224012532.html
   My bibliography  Save this article

An I–V characteristic reconstruction-based partial shading diagnosis and quantitative evaluation for photovoltaic strings

Author

Listed:
  • Zhang, Jingwei
  • Liu, Yongjie
  • Li, Yuanliang
  • Chen, Xiang
  • Ding, Kun
  • Yan, Jun
  • Chen, Xihui

Abstract

The partial shading condition (PSC) is the most common abnormality occurred in photovoltaic (PV) systems. Accurate quantitative evaluation of the shaded area and the severity of the shading is of potential importance in optimizing the maintenance strategy for PV systems. In this paper, we propose a PSC diagnosis and quantitative evaluation method by analyzing the measured string current–voltage (I–V) characteristic obtained from the PV inverter with the I–V scanning function, which includes pre-diagnosis of the system abnormality based on the operational power deviation, the diagnosis of PSCs based on the derivatives characteristics of the PV string, and the quantitative evaluation based on the I–V characteristic reconstruction. The quantitative evaluation of PSCs is the main focus in this paper, where the I–V characteristics of the unshaded PV modules in the partially shaded PV string are reconstructed according to different mismatch levels, respectively. The number of shaded PV modules and the corresponding severity of the partial shadings are estimated according to the reconstructed I–V characteristics. The simulation and experimental results verify that both the proposed diagnosis and quantitative evaluation method is effective with decent accuracy, especially for severe mismatch conditions. Experimental results show that the maximal mean absolute error of the quantified shaded area and quantified shaded rate are approximately 1.4446 units of 1/3 PV modules and 0.026, respectively.

Suggested Citation

  • Zhang, Jingwei & Liu, Yongjie & Li, Yuanliang & Chen, Xiang & Ding, Kun & Yan, Jun & Chen, Xihui, 2024. "An I–V characteristic reconstruction-based partial shading diagnosis and quantitative evaluation for photovoltaic strings," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224012532
    DOI: 10.1016/j.energy.2024.131480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224012532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.