IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224005292.html
   My bibliography  Save this article

Risk analysis and production safety design of supercritical carbon dioxide storage in gasification combustion cavity

Author

Listed:
  • Li, Wei
  • Li, Huaizhan
  • Chen, Yanpeng
  • Guo, Guangli
  • Chen, Fu
  • Tang, Chao
  • Zha, Jianfeng
  • Yuan, Yafei
  • Huo, Wenqi

Abstract

The storage of supercritical carbon dioxide in the coal underground gasification combustion cavity can not only reduce greenhouse gas emissions, help control global climate change, but also avoid potential geological hazards caused by the long-term existence of coal-burning holes. It is an important innovative development direction for the global coal industry. However, currently, there is insufficient examination of the practicality and hazards of UCG-CCS through industrial trials, which considerably restricts the spread and use of UCG-CCS. This study employs theoretical analysis and numerical simulation to examine the geological feasibility of UCG-CCS. It finds that the risk of carbon dioxide leakage in UCG-CCS is predominantly due to overlying rock fractures being diffused by the integrity of the cover layer and the parameters of the gasification furnace. It has also been found that the development height of cap rock fractures is closely related to CO2 injection pressure and gasification furnace width. As CO2 injection pressure increases, the capping fracture exhibits a descending trend resembling a stair-step; as gasification furnace width decreases, the development height of cap rock fractures decreases. On this basis, the technical approach and design method of preventing carbon dioxide leakage in UCG-CCS are proposed. The research findings have significant theoretical and practical implications for site selection and risk assessment in UCG-CCS process engineering.

Suggested Citation

  • Li, Wei & Li, Huaizhan & Chen, Yanpeng & Guo, Guangli & Chen, Fu & Tang, Chao & Zha, Jianfeng & Yuan, Yafei & Huo, Wenqi, 2024. "Risk analysis and production safety design of supercritical carbon dioxide storage in gasification combustion cavity," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224005292
    DOI: 10.1016/j.energy.2024.130757
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224005292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.