IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034096.html
   My bibliography  Save this article

Synergistic effect and volatile emission characteristics during co-combustion of biomass and low-rank coal

Author

Listed:
  • Zhang, Jinzhi
  • Zhang, Ke
  • Huang, Jiangang
  • Feng, Yutong
  • Yellezuome, Dominic
  • Zhao, Ruidong
  • Chen, Tianju
  • Wu, Jinhu

Abstract

Mass loss behaviours, volatile emissions (NO, HCN, NH3, CO, and CO2), and the O2 consumption characteristics during co-combustion of Naomaohu coal (NMH coal) and pine sawdust (PS) are studied using a TG-FTIR and a specially designed fixed-bed reactor. The results reveal that the trends of CO and CO2 in the TG-FTIR and fixed bed reactor results were similar, while the NO trends showed opposite behavior. In an inert atmosphere, there was no significant interaction during co-combustion of NMH coal and PS. However, a synergistic effect was observed under air atmosphere, leading to enhanced oxidation reactions and a notable reduction in ignition time. Specifically, the ignition time of NMH coal reduced from 5 s to 0.5 s when PS was added in the proportion of 75 %. Furthermore, the replacement of 25 % NMH coal with PS resulted in an 8.9 % reduction in NO emissions. This research provides a valuable framework for the thermal conversion of blends consisting of lignocellulosic biomass and low-rank coal.

Suggested Citation

  • Zhang, Jinzhi & Zhang, Ke & Huang, Jiangang & Feng, Yutong & Yellezuome, Dominic & Zhao, Ruidong & Chen, Tianju & Wu, Jinhu, 2024. "Synergistic effect and volatile emission characteristics during co-combustion of biomass and low-rank coal," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034096
    DOI: 10.1016/j.energy.2023.130015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.