IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033790.html
   My bibliography  Save this article

Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe0.9–xMoxY0.1O3–δ triple conducting composite for solid oxide fuel cells: Part II

Author

Listed:
  • Hanif, Muhammad Bilal
  • Rauf, Sajid
  • Sultan, Amir
  • Tayyab, Zuhra
  • Zheng, Kun
  • Makarov, Hryhorii
  • Madej, Dominika
  • Łasocha, Wiesław
  • Roch, Tomas
  • Mosiałek, Michał
  • Baker, Richard T.
  • Li, Cheng-Xin
  • Motola, Martin

Abstract

This research is the continuation of our previous work, in which we introduced novel proton-conducting electrolytes BaCe0.9–xMoxY0.1O3–δ (BCMxY; x = 0.025, 0.05). In this study, we explore the potential of the proton-conducting BCM0.025Y electrolyte by creating a composite with La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) to form triple conducting electrodes for solid oxide fuel cells (SOFC). The formation of the LSCF-BCM0.025Y composite enhances both the three-phase reaction interface length and the concentration of oxygen vacancies, contributing to improved dissociation rates and enhanced oxygen adsorption. The desired characteristics, including density, structure, composition, electrochemical performance, and thermal stability, have been confirmed through a comprehensive set of analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), and thermogravimetric analysis (TGA) coupled with differential scanning calorimetry (DSC), respectively. The cell configuration of Ni-YSZ | BCZY | LSCF-BCM0.025Y exhibited a remarkable maximum power density (MPD) of 418.7 mW cm−2, which is approximately 29 % higher than that achieved with a typical LSCF cathode (325.6 mW cm−2) at an operating temperature of 600 °C. The outstanding performance and enduring stability of the LSCF-BCM0.025Y composite over a 500 h period demonstrate its potential as a promising cathode material for intermediate-temperature SOFCs.

Suggested Citation

  • Hanif, Muhammad Bilal & Rauf, Sajid & Sultan, Amir & Tayyab, Zuhra & Zheng, Kun & Makarov, Hryhorii & Madej, Dominika & Łasocha, Wiesław & Roch, Tomas & Mosiałek, Michał & Baker, Richard T. & Li, Chen, 2024. "Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe0.9–xMoxY0.1O3–δ triple conducting composite for solid oxide fuel cells: Part II," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033790
    DOI: 10.1016/j.energy.2023.129985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.