IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033364.html
   My bibliography  Save this article

Numerical study on the gasification and shape evolution of single rod-shaped biomass char particle in a hot CO2/O2/H2O atmosphere

Author

Listed:
  • Shang, Fei
  • Ge, Zhiwei
  • Wang, Yu
  • Zhou, Chenchen
  • Guo, Shenghui
  • Ren, Changyifan

Abstract

In the industrial systems for CO2 gasification of biomass, a large amount of feedstock is presented as rod-shaped particles at different scales. The evolution of such particles during gasification remains unclear. This work investigated the overall gasification characteristics of single rod-shaped biomass char particle in a hot CO2/O2/H2O atmosphere and the intrinsic link between shape evolution and gasification characteristics. The overall gasification characteristics of the particle are discussed, including the influence of various inlet parameters and geometric parameters. The reaction intensity on the particle surface shows significant non-uniformity, which increases with the particle Reynolds number and oxygen concentration but decreases with increasing inlet temperature. The more the particle shape resembles a rod (aspect ratio ranging from 3:2 to 3:1), the more pronounced the non-uniformity of the surface temperature becomes (increasing by over five times). The intrinsic link between particle reaction properties and shape evolution was discussed using the dynamic mesh method. The shrinkage rate at the end of the particle is 1.73 times faster than that at the middle part. The non-uniformity of the surface temperature decreases by 6 % within 5 s, indicating that as the reaction proceeds, the reaction intensity on the particle surface tends to become more uniform.

Suggested Citation

  • Shang, Fei & Ge, Zhiwei & Wang, Yu & Zhou, Chenchen & Guo, Shenghui & Ren, Changyifan, 2024. "Numerical study on the gasification and shape evolution of single rod-shaped biomass char particle in a hot CO2/O2/H2O atmosphere," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033364
    DOI: 10.1016/j.energy.2023.129942
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.