IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223030773.html
   My bibliography  Save this article

A skeletal chemical reaction mechanism for gasoline-ABE blends combustion in internal combustion engine

Author

Listed:
  • Li, Yuqiang
  • Lin, Shoulong
  • Huang, Long
  • Liu, Jiangwei

Abstract

Acetone-butanol-ethanol (ABE), serving as the intermediate product in the biobutanol production process, has garnered significant attention as a promising alternative fuel, thanks to its ability to avoid the costs and energy consumption associated with biobutanol purification, as well as its potential to improve thermal efficiency and reduce pollutant emissions of internal combustion engine. However, to date, there has been limited in-depth research into the chemical reaction mechanism for the combustion of gasoline-ABE blends and its application in engine simulations. In this study, a skeletal chemical reaction mechanism of gasoline-ABE blends was constructed, which consists of 87 components and 387 reactions, using a manifold trajectory-based dimension reduction algorithm developed by our research group. The findings illustrate that the skeletal mechanism can accurately predict ignition delay, laminar flame speed, and premixed flame species profiles for each component within gasoline-ABE blends, including isooctane, n-heptane, toluene, acetone, butanol, and ethanol. The skeletal mechanism was subsequently coupled with a CFD model to further validate its efficacy in engine combustion simulation. The results indicate that the combustion characteristics of gasoline-ABE blends in the engine can be reliably reproduced. After conducting a comprehensive simulation analysis, it is revealed that gasoline blended with 30 vol% ABE361(A:B:E = 3:6:1) exhibits a shorter initial combustion duration, an extended main combustion duration, reduced CO emissions, but also increased NOx emissions.

Suggested Citation

  • Li, Yuqiang & Lin, Shoulong & Huang, Long & Liu, Jiangwei, 2024. "A skeletal chemical reaction mechanism for gasoline-ABE blends combustion in internal combustion engine," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030773
    DOI: 10.1016/j.energy.2023.129683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.