IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223030633.html
   My bibliography  Save this article

Suppression of thermal runaway induced by thermal abuse in large-capacity lithium-ion batteries with water mist

Author

Listed:
  • Hu, Jian
  • Tang, Xiaojie
  • Zhu, Xiaolong
  • Liu, Tong
  • Wang, Xishi

Abstract

Thermal runaway (TR), as the most critical safety problem of lithium-ion batteries (LIBs), may cause considerable accident consequences, especially for large capacity LIBs, TR hazards should be multiplied. Therefore, effective TR mitigation strategies are needed. Water mist (WM), being widely considered as a clean and efficient fire suppression method, is employed for TR control in this work. TR evolution of the multi-cell large capacity LIBs induced by thermal abuse has been clearly demonstrated for the first time, the disaster characteristics of the LIB before TR are dominated by the successive gas production behaviors of the internal cells, but the battery ultimately triggers the TR as a whole. More than that, the critical signal is identified based on the battery disaster development and is successfully used for TR suppression. Then the reason for TR being suppressed is revealed by elucidating the overall and instantaneous cooling effects of the WM on LIBs. Moreover, it is found that the disaster of large capacity LIBs develops quickly, and 15 s is sufficient to make TR uncontrollable. Even so, the WM still exhibits excellent cooling ability, taking away over 65 % of the battery heat accumulation. The results provide the first comprehensive analysis of TR evolution and clarify the ability of WM in TR suppression of multi-cell LIBs.

Suggested Citation

  • Hu, Jian & Tang, Xiaojie & Zhu, Xiaolong & Liu, Tong & Wang, Xishi, 2024. "Suppression of thermal runaway induced by thermal abuse in large-capacity lithium-ion batteries with water mist," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030633
    DOI: 10.1016/j.energy.2023.129669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.