IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029626.html
   My bibliography  Save this article

A novel online method incorporating computational fluid dynamics simulations and neural networks for reconstructing temperature field distributions in coal-fired boilers

Author

Listed:
  • Xue, Wenyuan
  • Tang, Zhenhao
  • Cao, Shengxian
  • Lv, Manli
  • Zhao, Bo
  • Wang, Gong

Abstract

Three-dimensional (3D) reconstructions of temperature distributions can be used to effectively design power plants and ensure production safety. Typically, 3D temperature reconstruction based on the flame image processing technology and finite element calculation of furnace combustion using computational fluid dynamics (CFD) simulation are performed to obtain the furnace temperature field. In this study, a novel online method that overcomes the defects of image detection devices was proposed for reconstructing the temperature field with improved evaluation accuracy. Numerical simulations were used to perform numerous calculations. In this method, deep neural network (DNN) models were used for reconstructing the 3D temperature distribution. The training set was derived from offline CFD simulations that were set for a specific boiler and a series of typical working conditions. Based on established DNN models, the online calculation of 3D temperature distribution was realized for current operating conditions. The result revealed that the furnace temperature field could be accurately reconstructed online in a 350-MW tangentially fired boiler. Compared with the numerical simulation results, the mean absolute percent error under the tilt angles of 0°, 10°, and −10° were 3.61 %, 4.25 %, and 4.52 %. The proposed integrated method was applied to actual boilers with average error 3.448 % and achieved feasible solutions within 20 s.

Suggested Citation

  • Xue, Wenyuan & Tang, Zhenhao & Cao, Shengxian & Lv, Manli & Zhao, Bo & Wang, Gong, 2024. "A novel online method incorporating computational fluid dynamics simulations and neural networks for reconstructing temperature field distributions in coal-fired boilers," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029626
    DOI: 10.1016/j.energy.2023.129568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.