IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp804-817.html
   My bibliography  Save this article

Combustion optimization of ultra supercritical boiler based on artificial intelligence

Author

Listed:
  • Shi, Yan
  • Zhong, Wenqi
  • Chen, Xi
  • Yu, A.B.
  • Li, Jie

Abstract

A method for optimizing the combustion in an ultra-supercritical boiler is developed and evaluated in a 660 MWe ultra-supercritical coal fired power plant. In this method, Artificial Neural Networks (ANN) models are established for predicting the boiler operating and emission properties. To enhance the generalization of the ANN models, Computational Fluid Dynamics (CFD) simulation is performed to generate some data as training samples for ANN modeling, together with the historical operating data. The inputs of the ANN models are unit load, coal properties, excess air and air distribution scheme, and the outputs are thermal efficiency and NOx emission. Based on the ANN models, Genetic Algorithm (GA) is used to optimize the air distribution scheme to achieve a higher thermal efficiency and lower NOx emission simultaneously. The predictions of the thermal efficiency and NOx emissions show a good agreement with the plant data, with mean errors of 0.04% and 3.56 mg/Nm3, respectively. The results indicate that the use of CFD data can help generalize the ANN models. The application to a practical plant demonstrates that the proposed approach provides an effective tool for multi-objective optimization of pulverized-coal boiler performance with improved thermal efficiency and NOx emission control.

Suggested Citation

  • Shi, Yan & Zhong, Wenqi & Chen, Xi & Yu, A.B. & Li, Jie, 2019. "Combustion optimization of ultra supercritical boiler based on artificial intelligence," Energy, Elsevier, vol. 170(C), pages 804-817.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:804-817
    DOI: 10.1016/j.energy.2018.12.172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218325477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Zhongbao & Li, Xiaolu & Xu, Lijun & Cheng, Yanting, 2013. "Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 683-692.
    2. Li, Zhengqi & Liu, Guangkui & Zhu, Qunyi & Chen, Zhichao & Ren, Feng, 2011. "Combustion and NOx emission characteristics of a retrofitted down-fired 660Â MWe utility boiler at different loads," Applied Energy, Elsevier, vol. 88(7), pages 2400-2406, July.
    3. Fang, Fang & Wei, Le, 2011. "Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units," Applied Energy, Elsevier, vol. 88(3), pages 814-824, March.
    4. Smrekar, J. & Assadi, M. & Fast, M. & Kuštrin, I. & De, S., 2009. "Development of artificial neural network model for a coal-fired boiler using real plant data," Energy, Elsevier, vol. 34(2), pages 144-152.
    5. Kouprianov, V. I. & Tanetsakunvatana, V., 2003. "Optimization of excess air for the improvement of environmental performance of a 150 MW boiler fired with Thai lignite," Applied Energy, Elsevier, vol. 74(3-4), pages 445-453, March.
    6. Bekat, Tugce & Erdogan, Muharrem & Inal, Fikret & Genc, Ayten, 2012. "Prediction of the bottom ash formed in a coal-fired power plant using artificial neural networks," Energy, Elsevier, vol. 45(1), pages 882-887.
    7. Kuang, Min & Li, Zhengqi & Zhang, Yan & Chen, Xiachao & Jia, Jinzhao & Zhu, Qunyi, 2012. "Asymmetric combustion characteristics and NOx emissions of a down-fired 300 MWe utility boiler at different boiler loads," Energy, Elsevier, vol. 37(1), pages 580-590.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shicheng & Ma, Suxia & Wang, Fang, 2023. "A combined NOx emission prediction model based on semi-empirical model and black box models," Energy, Elsevier, vol. 264(C).
    2. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    3. Sang-Mok Lee & So-Won Choi & Eul-Bum Lee, 2023. "Prediction Modeling of Flue Gas Control for Combustion Efficiency Optimization for Steel Mill Power Plant Boilers Based on Partial Least Squares Regression (PLSR)," Energies, MDPI, vol. 16(19), pages 1-33, September.
    4. Halil Akbaş & Gültekin Özdemir, 2020. "An Integrated Prediction and Optimization Model of a Thermal Energy Production System in a Factory Producing Furniture Components," Energies, MDPI, vol. 13(22), pages 1-29, November.
    5. Aminmahalati, Alireza & Fazlali, Alireza & Safikhani, Hamed, 2021. "Multi-objective optimization of CO boiler combustion chamber in the RFCC unit using NSGA II algorithm," Energy, Elsevier, vol. 221(C).
    6. Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
    7. Bartnicki, Grzegorz & Klimczak, Marcin & Ziembicki, Piotr, 2023. "Evaluation of the effects of optimization of gas boiler burner control by means of an innovative method of Fuel Input Factor," Energy, Elsevier, vol. 263(PD).
    8. Chandrakant Nikam, Keval & Jathar, Laxmikant & Shelare, Sagar Dnyaneshwar & Shahapurkar, Kiran & Dambhare, Sunil & Soudagar, Manzoore Elahi M. & Mubarak, Nabisab Mujawar & Ahamad, Tansir & Kalam, M.A., 2023. "Parametric analysis and optimization of 660 MW supercritical power plant," Energy, Elsevier, vol. 280(C).
    9. Lei Han & Lingmei Wang & Hairui Yang & Chengzhen Jia & Enlong Meng & Yushan Liu & Shaoping Yin, 2023. "Optimization of Circulating Fluidized Bed Boiler Combustion Key Control Parameters Based on Machine Learning," Energies, MDPI, vol. 16(15), pages 1-23, July.
    10. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    11. Bo Zhu & Bichen Shang & Xiao Guo & Chao Wu & Xiaoqiang Chen & Lingling Zhao, 2022. "Study on Combustion Characteristics and NOx Formation in 600 MW Coal-Fired Boiler Based on Numerical Simulation," Energies, MDPI, vol. 16(1), pages 1-30, December.
    12. Xu, Wentao & Huang, Yaji & Song, Siheng & Yue, Junfeng & Chen, Bo & Liu, Yuqing & Zou, Yiran, 2023. "A new on-line combustion optimization approach for ultra-supercritical coal-fired boiler to improve boiler efficiency, reduce NOx emission and enhance operating safety," Energy, Elsevier, vol. 282(C).
    13. Chen, Xi & Zhong, Wenqi & Li, Tianyu, 2023. "Fast prediction of temperature and chemical species distributions in pulverized coal boiler using POD reduced-order modeling for CFD," Energy, Elsevier, vol. 276(C).
    14. Chuanpeng Zhu & Pu Huang & Yiguo Li, 2022. "Closed-Loop Combustion Optimization Based on Dynamic and Adaptive Models with Application to a Coal-Fired Boiler," Energies, MDPI, vol. 15(14), pages 1-16, July.
    15. Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
    16. Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
    17. Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
    18. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: Model setup, validation, and preliminary predictions," Energy, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    2. Wang, Qingxiang & Chen, Zhichao & Li, Liankai & Zeng, Lingyan & Li, Zhengqi, 2020. "Achievement in ultra-low-load combustion stability for an anthracite- and down-fired boiler after applying novel swirl burners: From laboratory experiments to industrial applications," Energy, Elsevier, vol. 192(C).
    3. Chen, Zhichao & Wang, Qingxiang & Zhang, Xiaoyan & Zeng, Lingyan & Zhang, Xin & He, Tao & Liu, Tao & Li, Zhengqi, 2017. "Industrial-scale investigations of anthracite combustion characteristics and NOx emissions in a retrofitted 300 MWe down-fired utility boiler with swirl burners," Applied Energy, Elsevier, vol. 202(C), pages 169-177.
    4. Chen, Zhichao & Wang, Qingxiang & Wang, Bingnan & Zeng, Lingyan & Che, Miaomiao & Zhang, Xin & Li, Zhengqi, 2017. "Anthracite combustion characteristics and NOx formation of a 300MWe down-fired boiler with swirl burners at different loads after the implementation of a new combustion system," Applied Energy, Elsevier, vol. 189(C), pages 133-141.
    5. Zeng, Lingyan & Song, Minhang & Li, Xiaoguang & Liu, Yibo & Li, Zhengqi & Chen, Zhichao, 2017. "Factors affecting the downward flame depth in a 600 MW down-fired boiler incorporating multiple-injection and multiple-staging technology," Energy, Elsevier, vol. 118(C), pages 333-344.
    6. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    7. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    8. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    9. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    10. Sajad Koochakinia & Amir Ebrahimi-Moghadam & Mahdi Deymi-Dashtebayaz, 2022. "Techno-Environmental Analyses and Optimization of a Utility Boiler Based on Real Data," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    11. Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
    12. Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
    13. Ioannis E. Kosmadakis & Costas Elmasides, 2021. "A Sizing Method for PV–Battery–Generator Systems for Off-Grid Applications Based on the LCOE," Energies, MDPI, vol. 14(7), pages 1-29, April.
    14. Ghabraei, Soheil & Moradi, Hamed & Vossoughi, Gholamreza, 2018. "Design & application of adaptive variable structure &H∞ robust optimal schemes in nonlinear control of boiler-turbine unit in the presence of various uncertainties," Energy, Elsevier, vol. 142(C), pages 1040-1056.
    15. Li, Zhengqi & Liu, Guangkui & Zhu, Qunyi & Chen, Zhichao & Ren, Feng, 2011. "Combustion and NOx emission characteristics of a retrofitted down-fired 660Â MWe utility boiler at different loads," Applied Energy, Elsevier, vol. 88(7), pages 2400-2406, July.
    16. Wang, Yanhong & Li, Xiaoyu & Mao, Tianqin & Hu, Pengfei & Li, Xingcan & GuanWang,, 2022. "Mechanism modeling of optimal excess air coefficient for operating in coal fired boiler," Energy, Elsevier, vol. 261(PA).
    17. Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
    18. Nikpey, H. & Assadi, M. & Breuhaus, P., 2013. "Development of an optimized artificial neural network model for combined heat and power micro gas turbines," Applied Energy, Elsevier, vol. 108(C), pages 137-148.
    19. Ma, Jiao & Mu, Lan & Zhang, Zhikun & Wang, Zhuozhi & Shen, Boxiong & Zhang, Lei & Li, Aimin, 2020. "The effects of the modification of biodegradation and the interaction of bulking agents on the combustion characteristics of biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 209(C).
    20. Ling, Zhongqian & Ling, Bo & Kuang, Min & Li, Zhengqi & Lu, Ye, 2017. "Comparison of airflow, coal combustion, NOx emissions, and slagging characteristics among three large-scale MBEL down-fired boilers manufactured at different times," Applied Energy, Elsevier, vol. 187(C), pages 689-705.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:804-817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.