IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223021278.html
   My bibliography  Save this article

Technical benefits of the subcritical inlet condition for high-speed CO2 centrifugal compressor in the advanced power-generation cycle

Author

Listed:
  • Li, Yuzhe
  • Feng, Jiaqi
  • Zhang, Xu
  • Bai, Bofeng

Abstract

In the CO2 power-generation cycles, the compressor inlet condition has significant impacts on the performances of turbomachinery as well as the economies of cycle systems. In this article, based on numerical simulation and system parametric analysis, we compared the subcritical and supercritical inlet conditions of the CO2 compressor, which is from a prototype in a MWt simple recuperated cycle (SRC). As the result, the advantages and particularities of the subcritical inlet condition for the CO2 compressor are discussed and confirmed from the aero/thermo-dynamics and thermal/technical economies. In the study, we found the efficiency and pressure ratios of the CO2 compressor were significantly improved as the inlet pressure reduced below the critical point. And the operation of transcritical compression would not be obviously impacted by phase changes at the far-blockage conditions. In the system parametric analysis, we found the thermal and technical economies of the SRC system obtained significant rises at the subcritical compressor inlet condition. The increase of system efficiency reached 2–3%, while the financial cost reduced by 7.7%. The structural and mechanical safety of key components was also improved. Thereby, the present study provides different views to the benefits of subcritical compressor inlet conditions in CO2 cycles.

Suggested Citation

  • Li, Yuzhe & Feng, Jiaqi & Zhang, Xu & Bai, Bofeng, 2023. "Technical benefits of the subcritical inlet condition for high-speed CO2 centrifugal compressor in the advanced power-generation cycle," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223021278
    DOI: 10.1016/j.energy.2023.128733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223021278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Park, Joo Hyun & Bae, Sung Won & Park, Hyun Sun & Cha, Jae Eun & Kim, Moo Hwan, 2018. "Transient analysis and validation with experimental data of supercritical CO2 integral experiment loop by using MARS," Energy, Elsevier, vol. 147(C), pages 1030-1043.
    2. Romei, Alessandro & Gaetani, Paolo & Persico, Giacomo, 2022. "Computational fluid-dynamic investigation of a centrifugal compressor with inlet guide vanes for supercritical carbon dioxide power systems," Energy, Elsevier, vol. 255(C).
    3. Dadpour, Daryoush & Gholizadeh, Mohammad & Estiri, Mohammad & Poncet, Sébastien, 2023. "Multi objective optimization and 3E analyses of a novel supercritical/transcritical CO2 waste heat recovery from a ship exhaust," Energy, Elsevier, vol. 278(C).
    4. Wang, Tianze & Xu, Jinliang & Wang, Zhaofu & Zheng, Haonan & Qi, Jianhui & Liu, Guanglin, 2023. "Irreversible losses, characteristic sizes and efficiencies of sCO2 axial turbines dependent on power capacities," Energy, Elsevier, vol. 275(C).
    5. Jeong, Yongju & Cho, Seong Kuk & Son, In Woo & Lee, Jeong Ik, 2023. "Evaluation of off-design scaling methods of supercritical CO2 compressor with experimental data," Energy, Elsevier, vol. 278(C).
    6. Farajollahi, Hossein & Hossainpour, Siamak, 2023. "Techno-economic assessment of biomass and coal co-fueled chemical looping combustion unit integrated with supercritical CO2 cycle and Organic Rankine cycle," Energy, Elsevier, vol. 274(C).
    7. Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
    8. Miao, Zheng & Wang, Zhanbo & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Xu, Jinliang, 2023. "Development of selection criteria of zeotropic mixtures as working fluids for the trans-critical organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Jiaqi & Zhang, Enbo & Bai, Bofeng, 2024. "Dynamic modeling and response characteristics of closed CO2 cycle with Li/SF6 fuel boiler to external disturbances," Energy, Elsevier, vol. 312(C).
    2. Feng, Jiaqi & Wang, Junpeng & Chen, Zhentao & Li, Yuzhe & Luo, Zhengyuan & Bai, Bofeng, 2024. "Performance advantages of transcritical CO2 cycle in the marine environment," Energy, Elsevier, vol. 305(C).
    3. Li, Yuzhe & Zhang, Enbo & Feng, Jiaqi & Zhang, Xu & Yue, Liangyuan & Bai, Bofeng, 2024. "Reduced-dimensional prediction method for the axial aerodynamic forces in the off-design operation of near-critical CO2 centrifugal compressors," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuzhe & Zhang, Enbo & Feng, Jiaqi & Zhang, Xu & Yue, Liangyuan & Bai, Bofeng, 2024. "Reduced-dimensional prediction method for the axial aerodynamic forces in the off-design operation of near-critical CO2 centrifugal compressors," Energy, Elsevier, vol. 302(C).
    2. Wang, Tianze & Xu, Jinliang & Liu, Guanglin, 2025. "Maximum thermal efficiencies of supercritical CO2 power cycle at various power capacities," Energy, Elsevier, vol. 314(C).
    3. Yang, Zimu & Jiang, Hongsheng & Zhuge, Weilin & Qian, Yuping & Zhang, Yangjun, 2024. "Design of a partial discharge shrouded impeller for the centrifugal compressor of supercritical carbon dioxide power cycles," Energy, Elsevier, vol. 307(C).
    4. Liu, Kairui & Wang, Limin & Bai, Wengang & Che, Defu, 2025. "Comparative study on dynamic characteristics of 600 MW supercritical coal-fired boilers using CO2 and water as working fluids," Energy, Elsevier, vol. 314(C).
    5. Deng, Tianrui & Li, Xionghui & Wang, Qiuwang & Ma, Ting, 2019. "Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 180(C), pages 292-302.
    6. Liu, Zecheng & Zhong, Wenqi & Liu, Xuejiao & Shao, Yingjuan, 2023. "Techno-economic and environmental evaluation of a supercritical CO2 coal-fired circulating fluidized bed boiler power generation," Energy, Elsevier, vol. 285(C).
    7. Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
    8. Chen, Xiangxiang & Sun, Zhuang & Kuo, Po-Chih & Aziz, Muhammad, 2024. "Carbon-negative olefins production from biomass and solar energy via direct chemical looping," Energy, Elsevier, vol. 289(C).
    9. Guo, Jiangfeng & Xiang, Mengru & Zhang, Haiyan & Huai, Xiulan & Cheng, Keyong & Cui, Xinying, 2019. "Thermal-hydraulic characteristics of supercritical pressure CO2 in vertical tubes under cooling and heating conditions," Energy, Elsevier, vol. 170(C), pages 1067-1081.
    10. Yang, D.L. & Tang, G.H. & Sheng, Q. & Li, X.L. & Fan, Y.H. & He, Y.L. & Luo, K.H., 2023. "Effects of multiple insufficient charging and discharging on compressed carbon dioxide energy storage," Energy, Elsevier, vol. 278(PA).
    11. Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).
    12. Shuang Yang & Xiaohe Wang & Dang Ma & Xin Shen & Xinjie Zhu, 2025. "Thermodynamic-Environmental-Economic Evaluations of a Solar-Driven Supercritical CO 2 Cycle Integrated with Cooling, Heating, and Power Generation," Energies, MDPI, vol. 18(8), pages 1-26, April.
    13. Michel Molière & Romain Privat & Jean-Noël Jaubert & Frédéric Geiger, 2024. "Supercritical CO 2 Power Technology: Strengths but Challenges," Energies, MDPI, vol. 17(5), pages 1-29, February.
    14. Ma, Teng & Li, Ming-Jia & Xu, Jin-Liang & Cao, Feng, 2019. "Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant," Energy, Elsevier, vol. 175(C), pages 123-138.
    15. Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
    16. Cheng, Liangyuan & Xu, Jinliang & Cao, Wenxuan & Zhou, Kaiping & Liu, Guanglin, 2024. "Supercritical carbon dioxide heat transfer in horizontal tube based on the Froude number analysis," Energy, Elsevier, vol. 294(C).
    17. Li, Hongzhi & Zhang, Yifan & Yao, Mingyu & Yang, Yu & Han, Wanlong & Bai, Wengang, 2019. "Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop," Energy, Elsevier, vol. 174(C), pages 792-804.
    18. Yu, Meihong & Wang, Chen & Yu, Tang & Ma, Le & Liu, Xiuting & Gong, Houjun & Wang, Lei & Liu, Minyun & Huang, Yanping & Wang, Xinli, 2025. "Multi-stage ejector based low-pressure leaking gas recirculation system for supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 316(C).
    19. Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
    20. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Liu, Xinxin & Zhang, Yadong & Dang, Chaobin, 2019. "The heat transfer of supercritical CO2 in helically coiled tube: Trade-off between curvature and buoyancy effect," Energy, Elsevier, vol. 176(C), pages 765-777.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223021278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.