IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223023563.html
   My bibliography  Save this article

Performance enhancement of a Wells turbine using CFD-optimization algorithms coupling

Author

Listed:
  • Kotb, Ahmed T.M.
  • Nawar, Mohamed A.A.
  • Attai, Youssef A.
  • Mohamed, Mohamed H.

Abstract

Wells turbine is a popular device for converting wave energy. The current work aims to maximize the power a Wells turbine generates using a response surface optimization method based on computational fluid dynamics (CFD). The ANSYS software's response surface optimization toolbox was employed in this investigation. The Wells turbine received a performance boost using the variable tip clearance design. Input parameters for the optimization technique included two variable tip clearance design parameters. The major objective of the optimization process was to maximize the torque coefficient (CT) of the Wells turbine. The results showed that the optimal design boosted the average and maximum torque coefficients of the modified Wells turbine by 37.31% and 76.16%, respectively.

Suggested Citation

  • Kotb, Ahmed T.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Performance enhancement of a Wells turbine using CFD-optimization algorithms coupling," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023563
    DOI: 10.1016/j.energy.2023.128962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Halder, Paresh & Samad, Abdus & Kim, Jin-Hyuk & Choi, Young-Seok, 2015. "High performance ocean energy harvesting turbine design–A new casing treatment scheme," Energy, Elsevier, vol. 86(C), pages 219-231.
    2. Kim, T.H. & Setoguchi, T. & Kaneko, K. & Raghunathan, S., 2002. "Numerical investigation on the effect of blade sweep on the performance of Wells turbine," Renewable Energy, Elsevier, vol. 25(2), pages 235-248.
    3. Govardhan, M. & Dhanasekaran, T.S., 2002. "Effect of guide vanes on the performance of a self-rectifying air turbine with constant and variable chord rotors," Renewable Energy, Elsevier, vol. 26(2), pages 201-219.
    4. Fahmy, Mohamed Abdelsabour, 2019. "Design optimization for a simulation of rotating anisotropic viscoelastic porous structures using time-domain OQBEM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 193-205.
    5. Kotb, Ahmed T.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Performance assessment of a modified wells turbine using an integrated casing groove and Gurney flap design for wave energy conversion," Renewable Energy, Elsevier, vol. 197(C), pages 627-642.
    6. Torresi, M. & Camporeale, S.M. & Strippoli, P.D. & Pascazio, G., 2008. "Accurate numerical simulation of a high solidity Wells turbine," Renewable Energy, Elsevier, vol. 33(4), pages 735-747.
    7. Halder, Paresh & Samad, Abdus & Thévenin, Dominique, 2017. "Improved design of a Wells turbine for higher operating range," Renewable Energy, Elsevier, vol. 106(C), pages 122-134.
    8. Das, Tapas K. & Samad, Abdus, 2020. "Influence of stall fences on the performance of Wells turbine," Energy, Elsevier, vol. 194(C).
    9. Ciappi, Lorenzo & Cheli, Lapo & Simonetti, Irene & Bianchini, Alessandro & Talluri, Lorenzo & Cappietti, Lorenzo & Manfrida, Giampaolo, 2022. "Wave-to-wire models of wells and impulse turbines for oscillating water column wave energy converters operating in the Mediterranean Sea," Energy, Elsevier, vol. 238(PA).
    10. Shehata, Ahmed S. & Xiao, Qing & El-Shaib, Mohamed & Sharara, Ashraf & Alexander, Day, 2017. "Comparative analysis of different wave turbine designs based on conditions relevant to northern coast of Egypt," Energy, Elsevier, vol. 120(C), pages 450-467.
    11. Mohamed, M.H. & Janiga, G. & Pap, E. & Thévenin, D., 2011. "Multi-objective optimization of the airfoil shape of Wells turbine used for wave energy conversion," Energy, Elsevier, vol. 36(1), pages 438-446.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotb, Ahmed T.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Performance assessment of a modified wells turbine using an integrated casing groove and Gurney flap design for wave energy conversion," Renewable Energy, Elsevier, vol. 197(C), pages 627-642.
    2. Geng, Kaihe & Yang, Ce & Hu, Chenxing & Li, Yanzhao & Yang, Changmao, 2022. "Numerical investigation on the loss audit of Wells turbine with exergy analysis," Renewable Energy, Elsevier, vol. 189(C), pages 273-287.
    3. Halder, Paresh & Samad, Abdus & Thévenin, Dominique, 2017. "Improved design of a Wells turbine for higher operating range," Renewable Energy, Elsevier, vol. 106(C), pages 122-134.
    4. Geng, Kaihe & Yang, Ce & Zhao, Ben & Zhao, Wei & Gao, Jianbing & Hu, Chenxing & Zhang, Hanzhi & Wu, Wangxia, 2023. "Residual circulation budget analysis in a Wells turbine with leading-edge micro-cylinders," Renewable Energy, Elsevier, vol. 216(C).
    5. Das, Tapas K. & Samad, Abdus, 2020. "Influence of stall fences on the performance of Wells turbine," Energy, Elsevier, vol. 194(C).
    6. Paresh Halder & Hideki Takebe & Krisna Pawitan & Jun Fujita & Shuji Misumi & Tsumoru Shintake, 2020. "Turbine Characteristics of Wave Energy Conversion Device for Extraction Power Using Breaking Waves," Energies, MDPI, vol. 13(4), pages 1-17, February.
    7. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    8. Nazeryan, Mohammad & Lakzian, Esmail, 2018. "Detailed entropy generation analysis of a Wells turbine using the variation of the blade thickness," Energy, Elsevier, vol. 143(C), pages 385-405.
    9. Halder, Paresh & Samad, Abdus & Kim, Jin-Hyuk & Choi, Young-Seok, 2015. "High performance ocean energy harvesting turbine design–A new casing treatment scheme," Energy, Elsevier, vol. 86(C), pages 219-231.
    10. Stefanizzi, Michele & Camporeale, Sergio Mario & Torresi, Marco, 2023. "Experimental investigation of a Wells turbine under dynamic stall conditions for wave energy conversion," Renewable Energy, Elsevier, vol. 214(C), pages 369-382.
    11. Mohamed, M.H. & Shaaban, S., 2013. "Optimization of blade pitch angle of an axial turbine used for wave energy conversion," Energy, Elsevier, vol. 56(C), pages 229-239.
    12. Das, Tapas K. & Kumar, Kumud & Samad, Abdus, 2020. "Experimental Analysis of a Biplane Wells Turbine under Different Load Conditions," Energy, Elsevier, vol. 206(C).
    13. Abdullah Saad Alkhalifa & Mohammad Nasim Uddin & Michael Atkinson, 2022. "Aerodynamic Performance Analysis of Trailing Edge Serrations on a Wells Turbine," Energies, MDPI, vol. 15(23), pages 1-21, November.
    14. Morais, F.J.F. & Carrelhas, A.A.D. & Gato, L.M.C., 2023. "Biplane-rotor Wells turbine: The influence of solidity, presence of guide vanes and comparison with other configurations," Energy, Elsevier, vol. 276(C).
    15. Valizadeh, Reza & Abbaspour, Madjid & Rahni, Mohammad Taeibi, 2020. "A low cost Hydrokinetic Wells turbine system for oceanic surface waves energy harvesting," Renewable Energy, Elsevier, vol. 156(C), pages 610-623.
    16. Shehata, Ahmed S. & Xiao, Qing & El-Shaib, Mohamed & Sharara, Ashraf & Alexander, Day, 2017. "Comparative analysis of different wave turbine designs based on conditions relevant to northern coast of Egypt," Energy, Elsevier, vol. 120(C), pages 450-467.
    17. Liu, Hua & Wang, Weijun & Wen, Yadong & Mao, Longbo & Wang, Wenqiang & Mi, Hongju, 2019. "A novel axial flow self-rectifying turbine for use in wave energy converters," Energy, Elsevier, vol. 189(C).
    18. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Li, Ming, 2022. "Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves," Energy, Elsevier, vol. 250(C).
    19. Liu, Zhen & Cui, Ying & Xu, Chuanli & Sun, Lixin & Li, Ming & Jin, Jiyuan, 2019. "Experimental and numerical studies on an OWC axial-flow impulse turbine in reciprocating air flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. López, I. & Castro, A. & Iglesias, G., 2015. "Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry," Energy, Elsevier, vol. 83(C), pages 89-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.