Study of NO emission from CH4-air, oxygen-enriched, and oxy-CH4 combustion under HTC and MILD regimes: Impact of wall thermal condition in different oxidant temperature and dilution level
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127683
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cheong, Kin-Pang & Wang, Guochang & Wang, Bo & Zhu, Rong & Ren, Wei & Mi, Jianchun, 2019. "Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace," Energy, Elsevier, vol. 170(C), pages 1181-1190.
- Kuang, Yucheng & He, Boshu & Wang, Chaojun & Tong, Wenxiao & He, Di, 2021. "Numerical analyses of MILD and conventional combustions with the Eddy Dissipation Concept (EDC)," Energy, Elsevier, vol. 237(C).
- Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
- Cheong, Kin-Pang & Wang, Guochang & Si, Jicang & Mi, Jianchun, 2021. "Nonpremixed MILD combustion in a laboratory-scale cylindrical furnace: Occurrence and identification," Energy, Elsevier, vol. 216(C).
- Khabbazian, Ghasem & Aminian, Javad & Khoshkhoo, Ramin Haghighi, 2022. "Experimental and numerical investigation of MILD combustion in a pilot-scale water heater," Energy, Elsevier, vol. 239(PA).
- Fordoei, Esmaeil Ebrahimi & Boyaghchi, Fateme Ahmadi, 2022. "Influence of wall thermal conditions on the ignition, flame structure, and temperature behaviors in air-fuel, oxygen-enhanced, and oxy-fuel combustion under the MILD and high-temperature regimes," Energy, Elsevier, vol. 255(C).
- Fordoei, E. Ebrahimi & Mazaheri, Kiumars & Mohammadpour, Amirreza, 2021. "Numerical study on the heat transfer characteristics, flame structure, and pollutants emission in the MILD methane-air, oxygen-enriched and oxy-methane combustion," Energy, Elsevier, vol. 218(C).
- Cheong, Kin-Pang & Li, Pengfei & Wang, Feifei & Mi, Jianchun, 2017. "Emissions of NO and CO from counterflow combustion of CH4 under MILD and oxyfuel conditions," Energy, Elsevier, vol. 124(C), pages 652-664.
- Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
- Mardani, A. & Fazlollahi Ghomshi, A., 2016. "Numerical study of oxy-fuel MILD (moderate or intense low-oxygen dilution combustion) combustion for CH4–H2 fuel," Energy, Elsevier, vol. 99(C), pages 136-151.
- Li, Zhiyi & Cuoci, Alberto & Sadiki, Amsini & Parente, Alessandro, 2017. "Comprehensive numerical study of the Adelaide Jet in Hot-Coflow burner by means of RANS and detailed chemistry," Energy, Elsevier, vol. 139(C), pages 555-570.
- Tu, Yaojie & Xu, Mingchen & Zhou, Dezhi & Wang, Qingxiang & Yang, Wenming & Liu, Hao, 2019. "CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres," Applied Energy, Elsevier, vol. 240(C), pages 1003-1013.
- He, Yizhuo & Zou, Chun & Song, Yu & Liu, Yang & Zheng, Chuguang, 2016. "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)," Energy, Elsevier, vol. 112(C), pages 1024-1035.
- Wang, G. & Si, J. & Xu, M. & Mi, J., 2019. "MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow," Energy, Elsevier, vol. 187(C).
- Wang, Qiangxiang & Xie, Mengqian & Tu, Yaojie & Liu, Hao & Li, Weijie, 2022. "Numerical study of fuel-NO formation and reduction in a reversed flow MILD combustion furnace firing ammonia-doped methane," Energy, Elsevier, vol. 252(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hu, Fan & Li, Pengfei & Cheng, Pengfei & Shi, Guodong & Gao, Yan & Liu, Yaowei & Ding, Cuijiao & Yang, Chao & Liu, Zhaohui, 2023. "Comparative study on homogeneous NO-reburning in flameless and swirl flame combustion," Energy, Elsevier, vol. 283(C).
- Fordoei, Esmaeil Ebrahimi & Boyaghchi, Fateme Ahmadi, 2022. "Influence of wall thermal conditions on the ignition, flame structure, and temperature behaviors in air-fuel, oxygen-enhanced, and oxy-fuel combustion under the MILD and high-temperature regimes," Energy, Elsevier, vol. 255(C).
- Zhao, Zhenghong & Zhang, Zewu & Zha, Xiaojian & Gao, Ge & Li, Xiaoshan & Wu, Fan & Luo, Cong & Zhang, Liqi, 2023. "Internal association between combustion behavior and NOx emissions of pulverized coal MILD-oxy combustion affected by adding H2O," Energy, Elsevier, vol. 263(PD).
- Cheong, Kin-Pang & Wang, Guochang & Si, Jicang & Mi, Jianchun, 2021. "Nonpremixed MILD combustion in a laboratory-scale cylindrical furnace: Occurrence and identification," Energy, Elsevier, vol. 216(C).
- Tian, Ye & Zhou, Xiong & Ji, Xuanyu & Bai, Jisong & Yuan, Liang, 2019. "Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement," Energy, Elsevier, vol. 171(C), pages 149-160.
- Wang, Yi & Cheong, Kin-Pang & Wang, Junyang & Liu, Shaotong & Hu, Yong & Chyu, Minking & Mi, Jianchun, 2024. "Operational condition and furnace geometry for premixed C3H8/Air MILD combustion of high thermal-intensity and low emissions," Energy, Elsevier, vol. 288(C).
- Hu, Fan & Li, Pengfei & Zhang, Tai & Zu, Daohua & Cheng, Pengfei & Liu, Yaowei & Mi, Jianchun & Liu, Zhaohui, 2022. "Experimental investigation on co-firing residual char and pulverized coal under MILD combustion using low-temperature preheating air," Energy, Elsevier, vol. 244(PA).
- Fordoei, E. Ebrahimi & Mazaheri, Kiumars & Mohammadpour, Amirreza, 2021. "Numerical study on the heat transfer characteristics, flame structure, and pollutants emission in the MILD methane-air, oxygen-enriched and oxy-methane combustion," Energy, Elsevier, vol. 218(C).
- Jozaalizadeh, Toomaj & Toghraie, Davood, 2019. "Numerical investigation behavior of reacting flow for flameless oxidation technology of MILD combustion: Effect of fluctuating temperature of inlet co-flow," Energy, Elsevier, vol. 178(C), pages 530-537.
- Sayadzadeh, Mohammad Esmaiel & Samani, Majid Riahi & Toghraie, Davood & Emami, Sobhan & Eftekhari, Seyed Ali, 2023. "Numerical study on pollutant emissions characteristics and chemical and physical exergy analysis in Mild combustion," Energy, Elsevier, vol. 278(PB).
- Liu, Jie & Guo, Qiang & Liang, Wenkai & Feng, Xuning & Wang, Hewu, 2024. "On the NTC behaviors in explosion limits of C1 to C3 n-alkane/air mixtures," Energy, Elsevier, vol. 294(C).
- Mohammadpour, Mohammadreza & Ashjaee, Mehdi & Houshfar, Ehsan, 2022. "Thermal performance and heat transfer characteristics analyses of oxy-biogas combustion in a swirl stabilized boiler under various oxidizing environments," Energy, Elsevier, vol. 261(PA).
- Wang, Qiangxiang & Xie, Mengqian & Tu, Yaojie & Liu, Hao & Li, Weijie, 2022. "Numerical study of fuel-NO formation and reduction in a reversed flow MILD combustion furnace firing ammonia-doped methane," Energy, Elsevier, vol. 252(C).
- Hu, Fan & Xiong, Biao & Liu, Xuhui & Huang, Xiaohong & Li, Yu & Liu, Zhaohui, 2023. "Optimized TGA-based experimental method for studying intrinsic kinetics of coal char oxidation under moderate or intense low-oxygen dilution oxy-fuel conditions," Energy, Elsevier, vol. 265(C).
- Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
- Wang, Feifei & Li, Pengfei & Mi, Jianchun & Wang, Jinbo, 2018. "A refined global reaction mechanism for modeling coal combustion under moderate or intense low-oxygen dilution condition," Energy, Elsevier, vol. 157(C), pages 764-777.
- Tian, Junjian & Liu, Xiang & Shi, Hao & Yao, Yurou & Ni, Zhanshi & Meng, Kengsheng & Hu, Peng & Lin, Qizhao, 2024. "Experimental study on MILD combustion of methane under non-preheated condition in a swirl combustion furnace," Applied Energy, Elsevier, vol. 363(C).
- Liu, Yaming & Chen, Sheng & Liu, Shi & Feng, Yongxin & Xu, Kai & Zheng, Chuguang, 2016. "Methane combustion in various regimes: First and second thermodynamic-law comparison between air-firing and oxyfuel condition," Energy, Elsevier, vol. 115(P1), pages 26-37.
- Li, Zhiyi & Cuoci, Alberto & Sadiki, Amsini & Parente, Alessandro, 2017. "Comprehensive numerical study of the Adelaide Jet in Hot-Coflow burner by means of RANS and detailed chemistry," Energy, Elsevier, vol. 139(C), pages 555-570.
- Sharma, Saurabh & Chowdhury, Arindrajit & Kumar, Sudarshan, 2020. "A novel air injection scheme to achieve MILD combustion in a can-type gas turbine combustor," Energy, Elsevier, vol. 194(C).
More about this item
Keywords
NO Emission; Wall thermal condition; MILD Combustion; Oxy-CH4 combustion; Oxygen-enriched combustion; Sensitivity analysis;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010770. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.